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Abstract

We present a finite-element software library, i r e ne , for numerically solving the steady state
and dynamics of a two-dimensional viscous fluid layer embedded in three-dimensional space, on
multiple physical scales. The library is designed to handle a wide range of physical regimes—both
low-Reynolds-number and turbulent ones—and geometries, capturing the coupling between in-plane
flows, out-of-plane deformations, surface tension, and elastic response. In addition, the software can
treat complex geometries, including those with intra-layer obstacles or arbitrary layer boundaries. We
validate i r e ne against known analytical and numerical results and demonstrate its capabilities
through examples relevant to biological membranes and macroscopic air flows.

1 Introduction

Thin fluid layers are central to a wide range of physical systems, from biological membranes [1] and
cell cortices [2] to soap films [3] and industrial coatings. These two-dimensional interfaces often exhibit
complex dynamics, involving in-plane viscous flow, out-of-plane deformations, and interactions with
surrounding media. Modeling such systems presents substantial challenges due to their geometric
nonlinearity, the coupling between flows and shape and, in some regimes, the presence of turbulence or
flow instabilities. In biological contexts, deformable, curved fluid interfaces such as the cell cortex or
lipid bilayers play a key role in morphogenetic processes, cell motility, and signaling. Membrane-bound
proteins can locally alter mechanical or transport properties and interact with curvature to generate
feedback mechanisms [1, 4].

On macroscopic scales, fluid sheets can exhibit instabilities, folding, or turbulent behavior driven by
external forcing or intrinsic flow dynamics [5, 6, 7]. On mesoscopic, planetary scales, layers of clouds at
low altitude in the atmosphere may exhibit complex, turbulent behavior on spatial extensions so large
that the curvature of the layer surface—induced by the the Earth’s curvature—is significant [8]. A unified
numerical framework that captures both in- and out-of-plane deformations across regimes and scales is
essential for understanding such phenomena.

Several numerical approaches have been proposed to simulate surface hydrodynamics, including
boundary-integral methods [9], immersed-boundary methods [10, 11], spectral methods [12], Monte
Carlo methods [13], and surface finite elements [14]. While each of these methods is well suited for
specific physical conditions and geometries, there remains a need for a versatile, extensible framework
capable of describing surface flows on evolving geometries, with robust control over boundary conditions
(BCs) and material properties.
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We present a fluId layeR finitE-Element softwarE ( i r e ne ), which allows to numerically solve for
the steady state and dynamics of a two-dimensional viscous fluid layer embedded in three-dimensional
space, in a large variety of physical regimes and geometries. Our method captures the coupling between
in-plane flows, out-of-plane deformations, surface tension, and elastic response of the fluid layer. i r e ne

’s modular design allows for a wide range of BCs and can treat a large variety of geometries, including
fluid layers with intra-layer obstacles, or layer boundaries with arbitrary shapes. The method is designed
to operate across different physical regimes—from low-Reynolds number flows relevant for cellular
systems [15], to inertia-driven regimes characteristic of macroscopic or mesoscopic air films [8].

We validate the method against known analytical and numerical results and demonstrate its capabilities
through representative examples. These include the steady-state flow of a lipidic membrane with a
trans-membrane protein (TMP) [16] in a ring geometry, and the dynamics of Poiseuille flow of air [17]
on a curved channel. The modular design of our implementation makes it a promising tool for future
extensions, such as the inclusion of active stresses and interactions with surrounding fluids on multiple
physical scales [18, 19].

The manuscript is organized as follows. In Section 2 we present the partial differential equations
(PDEs) which describe the dynamics of the fluid layer. In Section 3 we present i r e ne ’s solution of
these PDEs in a few representative examples for the steady state for cell membranes, Section 3.1, and
for the dynamics of macroscopic air flow, Section 3.2. Finally, Section 4 is devoted to the discussion and
interpretation of the results, and future directions.

2 Method

Let us consider a two-dimensional fluid layer embedded in three-dimensional space, see Fig. 1. The
elements of the fluid flow tangentially to the layer and the layer itself can deform, exhibiting a velocity
normal to the layer surface: we will denote the tangential and normal velocities above by 𝑣 and 𝑤
respectively. Geometrically speaking, the surface of the layer constitutes a differential manifold, which
we will denote by ℳ. The velocity 𝑣 𝑖 is a vector field in the tangent bundle of ℳ, while 𝑤 is a scalar
field on ℳ [20]. The surface tension of the layer is denoted by 𝜎. Choosing—for example—the Monge
parametrization [21] to parametrize ℳ, the layer height is given by a function 𝑧(x), where x are the
coordinates on a domain Ω ∈ R2, see Fig. 1.

In what follows, we will assume that the elastic response of the layer is described by the Helfrich free
energy [22]. However, the modular structure of i r e ne allows to implement other elastic models, see
Section 4.

The equations which describe the dynamics of the velocities, tension and shape of the layer are
[23, 24, 25]

∇𝑖𝑣 𝑖 − 2𝐻𝑤 = 0, (1)
𝜌(𝜕𝑡𝑣 𝑖 + 𝑣 𝑗∇𝑗𝑣 𝑖 − 2𝑣 𝑗𝑤𝑏 𝑖𝑗 − 𝑤∇𝑖𝑤) =

∇𝑖𝜎 + 𝜂
[
−∇LB𝑣 𝑖 − 2

(
𝑏 𝑖 𝑗 − 2𝐻 𝑔 𝑖 𝑗

)
∇𝑗𝑤 + 2𝐾𝑣 𝑖

]
, (2)

𝜌
[
𝜕𝑡𝑤 + 𝑣 𝑖

(
𝑣 𝑗𝑏 𝑗𝑖 + ∇𝑖𝑤

)]
=

2𝜅
[∇LB𝐻 − 2𝐻(𝐻2 − 𝐾)] + 2𝜎𝐻 + 2𝜂

[(∇𝑖𝑣 𝑗)𝑏𝑖 𝑗 − 2𝑤(2𝐻2 − 𝐾)] , (3)

𝜕𝑡𝑧 = 𝑤 (�̂�3 − �̂� 𝑖𝜕𝑖𝑧), (4)

Equations (1) to (4) are a set of PDEs [26], defined on a setΩwith boundary 𝜕Ω, for the two components
𝑣 𝑖 of the tangent velocity 𝑣, the normal velocity 𝑤, the surface tension 𝜎, and the fluid shape profile 𝑧,
where each unknown depends on both the coordinates x on Ω and time 𝑡. In Eqs. (1) to (4), ∇ is the
covariant derivative, 𝑔 the metric tensor, 𝑏 the second fundamental form, 𝐻 and 𝐾 the mean and gaussian
curvatures, respectively, and ∇LB the Laplace-Beltrami operator [27, 23]. The vector �̂� is the unit normal
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Figure 1: Differential manifold of the fluid layer and its boundaries. A) Manifold ℳ (gray surface). The domain
Ω ∈ R2 over which the coordinates 𝑥1, 𝑥2 of ℳ are defined is a rectangle with a circular hole. The boundary of Ω, 𝜕Ω,
is composed of the rectangular boundaries 𝜕Ω , 𝜕Ω , 𝜕Ω , 𝜕Ω , and the circular boundary 𝜕Ω , denoted by solid
colored curves. The corresponding boundaries on ℳ are marked as dashed curves, with the same color. A point
x ∈ Ω and its corresponding location on ℳ is shown in red. B) Vector field of the normal to ℳ in three-dimensional
Euclidean space, �̂� . C) Normal to the circle boundary, 𝑛, which lies in the tangent bundle of ℳ.

vector to Ω, which lives in the Euclidean, three-dimensional space in which Ω is embedded, while 𝑛 is
the normal to a boundary of ℳ, and it belongs to the tangent bundle of ℳ [27], see Fig. 1. It is important
to point out that, despite the fact that in i r e ne ’s examples we will make use of the Monge coordinate
system [21], Eqs. (1) to (4) are covariant with respect to a general diffeomorphism 𝑥 𝑖 → 𝑥′𝑖 [20]—which
ensures that the physical behavior of the system is independent of the coordinate choice .

In what follows, we will consider two geometries for Ω: A square geometry, shown in Fig. 1, and a ring
geometry. For the ring geometry, we will consider radially symmetric boundary-value problems (BVPs):
Such problems allow for a numerically exact solution, which we will leverage to test i r e ne ’s solutions.

For a square geometry, we will denote by 𝜕Ω , 𝜕Ω , 𝜕Ω , 𝜕Ω , 𝜕Ω , 𝜕Ω the left, right, top, bottom,
rectangle and circle boundaries, respectively. For these boundaries, we have

𝜕Ω ≡𝜕Ω ∪ 𝜕Ω , (5)
𝜕Ω =𝜕Ω ∪ 𝜕Ω ∪ 𝜕Ω , (6)
𝜕Ω =𝜕Ω ∪ 𝜕Ω . (7)

For the ring geometry, we will denote the boundaries of the inner and outer circles, respectively, by
𝜕Ω and 𝜕Ω , and the whole boundary by

𝜕Ω =𝜕Ω ∪ 𝜕Ω . (8)

3 Results

In what follows, we will show how ir e ne can solve and predict the physical behavior of the fluid layer
defined by Eqs. (1) to (4), illustrating the results for the two geometries above. Starting from the simplest
problems and gradually increasing their complexity, will first consider the steady state of Eqs. (1) to (4),
and then discuss the dynamics.
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3.1 Steady state

At steady state, we set all time derivatives in Eqs. (1) to (4) to zero, and obtain

∇𝑖𝑣 𝑖 − 2𝐻𝑤 =0, (9)

𝜌(𝑣 𝑗∇𝑗𝑣 𝑖 − 2𝑣 𝑗𝑤𝑏 𝑖𝑗 − 𝑤∇𝑖𝑤) =∇𝑖𝜎 + 𝜂
[
−∇LB𝑣 𝑖 − 2

(
𝑏 𝑖 𝑗 − 2𝐻 𝑔 𝑖 𝑗∇𝑗𝑤

)
+ 2𝐾𝑣 𝑖

]
(10)

𝜌𝑣 𝑖
(
𝑣 𝑗𝑏 𝑗𝑖 + ∇𝑖𝑤

)
=2𝜅

[∇LB𝐻 − 2𝐻(𝐻2 − 𝐾)] + 2𝜎𝐻+ (11)

+ 2𝜂
[(∇𝑖𝑣 𝑗)𝑏𝑖 𝑗 − 2𝑤(2𝐻2 − 𝐾)] ,

𝑤 (�̂�3 − �̂� 𝑖𝜕𝑖𝑧) =0. (12)

While in Eqs. (9) to (12) the time derivatives vanish, the convective terms which enter in the material
derivative of the velocities [17] are present: Together with the terms involving the manifold shape, such
terms contribute to the nonlinearity of the PDEs.

We will now consider the steady state in the absence of flows first, and then discuss the steady state in
the presence of flows.

3.1.1 Steady state with no flows

In the absence of flows, Eqs. (9) to (12) with 𝑣 𝑖 = 𝑤 = 0 reduce to a single PDE, which determines the
layer shape [28, 29, 30]:

0 =2𝜅
[∇LB𝐻 − 2𝐻(𝐻2 − 𝐾)] + 2𝜎𝐻, (13)

where Eqs. (9), (10) and (12) are identically satisfied. Here, we choose the coordinates of the Monge
parametrization, Section S1.7, suppose that the surface-tension profile 𝜎 is given: as a result, the only
unknown of Eq. (13) is the membrane profile 𝑧. This reflects a physical situation where, for example,
the intrinsic features of the layer material are such that the surface tension is barely affected by the layer
shape. From the mathematical standpoint, Eq. (13) is a fourth-order PDE in 𝑧, since 𝐻 contains up to
second-order derivatives of 𝑧; see Eqs. (S2) to (S6),

Equation (13) requires special care when handled with finite-element methods (FEMs). First, we recall
that i r e ne is based on the finite element computational software (FEniCS) library [31], in which we
will make use of function spaces where fields are represented as polynomials which are continuous across
elements, but whose derivatives are discontinuous across elements [32]. As a result, the second derivative
of a field, e.g., 𝜕𝑖𝜕𝑗𝑧 would result into numerical blow-ups. In order to avoid these blow-ups, we introduce
some auxiliary fields, defined in terms of the partial derivatives of 𝑧. To achieve this, we observe that
Eq. (13) depends on 𝑧 only through its first derivatives: it is thus natural to introduce the field

𝜔𝑖 ≡ ∇𝑖𝑧, (14)

and re-express Eq. (13) in terms of 𝑧 and 𝜔. This allows not only to solve the blow-up issue above, but it
also yields an efficient factorization and a flexible form of the variational problem (VP). In particular, the
latter allows to enforce Neumann BCs on 𝑧 as Dirichlet BCs on 𝜔 [26]. Second, we introduce the field

𝜇 = 𝐻(𝜔), (15)

where we have explicitly marked the dependence of 𝐻 on 𝜔 given by Eqs. (S2) to (S6).
We thus obtain the system of PDEs

2𝜅
[∇LB𝜇 − 2𝜇(𝜇2 − 𝐾)] + 2𝜎𝜇 = 0,

Eqs. (14) and (15),
(16)
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Figure 2: Steady state in the absence of flows for a lipidic membrane with a trans-membrane protein inclusion on a
square geometry with fixed-height boundary conditions, Eqs. (S46) to (S49). Rectangle dimensions are 𝐿 = ℎ = 1𝜇m,
and the protein is located at the rectangle center, c = (𝐿/2, ℎ/2). The solution has been obtained with parameters (17),
𝑧 = 0𝜇m , 𝑧 = −0.5𝜇m , 𝜓 = −0.5, 𝜓 = 0, 𝜎 = 1 Pa𝜇m. A) Membrane profile 𝑧 (surface) and trans-membrane
protein (red cone), where the color code represents the membrane height. The black curves along the surface serve as
guides for the eye. B) Mesh and protein. For the sake of clarity, the shown mesh is coarser than the one used to
produce the solution.

for the unknowns 𝑧, 𝜔 and 𝜇, where the first equation depends on 𝑧 through 𝜔 only. In these PDEs,
the highest-order derivative which appears is the second-order one, see Eq. (16). As a result, in the
variational formulation, of the problem, second-order derivatives will be integrated by parts, resulting in
a well-posed problem where the highest-order derivatives are the first-order ones—see Section S3.1.1.

We will show i r e ne solution for the steady state with no flows with an example from biological
physics—the deformation of a lipidic cell membrane. Such deformation can describe, for example,
membrane-shape fluctuations [33, 34], the formation of membrane tubules [35] engineered with mi-
cropipettes [36] or optical tweezers [37], or membrane-shape deformations due to TMPs [38, 39, 40, 41].
Here, we will focus on the latter example, by considering a TMP inserted into the fluid layer—the
membrane. Typical model parameters for this problem with a circular protein inclusion of radius 𝑟 are
[42, 43, 44, 16]:

𝜅 = 10 𝑘B𝑇, 𝑇 = 300𝐾, 𝜌 = 10−12 Pa 𝑠2/𝜇m, 𝜂 = 10−2 Pa𝜇m s, 𝑟 = 10 nm. (17)

In Fig. S1 we present the solution from i r e ne for a ring geometry with BCs which fix the membrane
height at both the inner circle, where the TMP is located, and at the outer circle, see Section S3.1.1 and
Case 1a in there for details. In addition, we show the numerically exact solution, obtained by reducing
the PDEs to an ordinary differential equation (ODE) by leveraging spherical symmetry, see Section S3.3.1.

In Fig. 2 we show the solution for a rectangular geometry, for which no exact solution exists. The
inner circle is located at the rectangle center, c = (𝐿/2, ℎ/2). The solution is detailed in Section S3.1.1 and
Case 1b in there. In Fig. 3, we show the solution on a square geometry with a different set of BCs, which
fix the layer slope rather than its height at the protein, see Section S3.1.1 and Case 2 in there. These BCs
results from the physical assumption that the the lipid bilayer is anchored to the protein perpendicularly
to the protein (cone) surface.
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Figure 3: Steady state in the absence of flows for a lipidic membrane with a trans-membrane protein inclusion on a
square geometry. Rectangle and obstacle dimensions and location are the same as in Fig. 2. The solution is obtained
with fixed-slope boundary conditions, Eqs. (S46), (S51) and (S52), and parameters (17), 𝑧 = 0 , 𝜙𝑖 = 0.5 𝜕𝑖 |x − x | ,
𝜓 = 0 and 𝜎 = 1 Pa𝜇m. Notation and mesh are the same as in Fig. 2.

3.1.2 Steady state with flows

The steady state in presence of flows is described by Eqs. (9) to (12), whose unknowns are 𝑣, 𝑤, 𝜎 and 𝑧.
Proceeding along the same lines as Section 3.1.1, we combine Eqs. (9) to (12), (14) and (15) and obtain

∇𝑖𝑣 𝑖 − 2𝜇𝑤 =0, (18)

𝜌
(
𝑣 𝑗∇𝑗𝑣 𝑖 − 2𝑣 𝑗𝑤𝑏 𝑖𝑗 − 𝑤∇𝑖𝑤

)
=∇𝑖𝜎 + 𝜂

[
−∇LB𝑣 𝑖 − 2

(
𝑏 𝑖 𝑗 − 2𝜇 𝑔 𝑖 𝑗

)
∇𝑗𝑤 + 2𝐾𝑣 𝑖

]
, (19)

𝜌𝑣 𝑖
(
𝑣 𝑗𝑏 𝑗𝑖 + ∇𝑖𝑤

)
=2𝜅

[∇LB𝜇 − 2𝜇(𝜇2 − 𝐾)] + 2𝜎𝜇

+ 2𝜂
[(∇𝑖𝑣 𝑗)𝑏𝑖 𝑗 − 2𝑤(2𝜇2 − 𝐾)] , (20)

𝑤 (�̂�3 − �̂� 𝑖𝜔𝑖) =0, (21)
Eqs. (14) and (15), (22)

where Eqs. (18) to (21) depend on 𝑧 through 𝜔 and 𝜇 only. The variational formulation by which Eqs. (18)
to (21) are solved in i r e ne is discussed in Section S3.1.2.

We will now discuss i r e ne ’s results for the steady with flows, for a lipidic cell membrane. In Fig. S2,
we show the solution from i r e ne for a ring geometry with BCs which fix the membrane height at the
inner circle, i.e., the TMP, see Section S3.1.2 and Case 1a in there. Also, we compare i r e ne ’ssolution
with the numerically exact solution, obtained by reducing the PDEs to an ODE by leveraging spherical
symmetry, detailed in Section S3.3.2. Figure S3 shows the solution for a ring geometry with BCs which
fix the membrane slope at the TMP, which here TMP behaves as a sink; see Case 2a in Section S3.1.2 for
details.

Finally, Figs. S4 and 4 show the solution on a rectangular geometry, where no analytical solution
exists. Membrane is injected on one side of the rectangle, and Figs. S4 and 4 display the solution with
fixed-height and fixed-slope BCs, respectively—see Cases 1b and 2b in Section S3.1.2 for details.

3.2 Dynamics

In what follows, we will discuss the dynamics of the fluid layer defined by Eqs. (1) to (4), illustrating the
results for the two geometries above. We will first consider the dynamics on a fixed manifold, and then
discuss the dynamics on a moving manifold.
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Figure 4: Steady state in the presence of flows for a lipidic membrane with a trans-membrane protein on a square
geometry, with fixed-slope boundary conditions (S83), (S84), (S86), (S88) and (S100) to (S105). The solution has
been obtained with parameters (17), 𝑣 = 1𝜇m/𝑠, 𝜎 = 1 Pa𝜇m, 𝜙𝑖 = 0.1 𝜕𝑖 |x − x |, 𝜓 = 0. Rectangle and obstacle
geometry are the same as in Fig. 2. A) Membrane profile 𝑧. B) Surface tension 𝜎. C) Tangential velocity 𝑣, displayed
on top of the surface of A.
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3.2.1 Dynamcis with fixed manifold

Given that the manifold profile 𝑧 is fixed, here 𝑤 = 0. We assume that the problem and its BCs are
invariant under translations along 𝑥1: This choice has been made in order to test i r e ne on a problem
which is translationally invariant, and thus admits an analytical solution, see Section S3.3.3 for details.
The governing equations are Eqs. (1) and (2) with a null normal velocity:

∇𝑖𝑣 𝑖 = 0, (23)

𝜌
(
𝜕𝑡𝑣 𝑖 + 𝑣 𝑗∇𝑗𝑣 𝑖

)
= ∇𝑖𝜎 − 𝜂∇LB𝑣 𝑖 , (24)

where the translational invariance with respect to the 𝑥1 axis implies 𝐾 = 0. The unknowns are the
tangent velocity 𝑣 and the surface tension 𝜎.

Figure S5 shows the dynamics from ir e ne for a laminar air flow in a curved channel with
macroscopic dimensions; panel B shows that i r e ne ’s solution at steady state agrees with the exact
solution for Poiseuille flow on a curved manifold, see Section S3.3.3. Figure S5B also shows that i r e ne ’s
solution strongly differs from the Poiseuille-flow solution on a flat manifold, indicating that the manifold
curvature is important in this example.

Figure S6 shows the dynamics of turbulent air flow in a fixed, curved channel with an obstacle, both
with macroscopic dimensions. The Figure reproduces the spatiotemporal pattern of Von Kármán vortex
street [45, 46, 47, 48] on a curved manifold.

3.2.2 Dynamcis with moving manifold

We will now consider the case where the manifold ℳ is not steady, but it evolves in time, deformed by
surface tension, tangential and normal fluxes, to which it is coupled. The governing equations are Eqs. (1)
to (4), and the unknowns 𝑣, 𝑤, 𝜎 and 𝑧, each of which depends on both space and time.

In Fig. 5, we show i r e ne ’s results for the dynamics of a turbulent, macroscopic air flow confined in
a flexible rubber layer, with parameters

𝜅 = 10−6 N m, 𝜌 = 1.293 × 10−2 Kg/m2 , 𝜂 = 1.85 × 10−7 Kg/s. (25)

Here, 𝜌 and 𝜂 are the air density and viscosity, respectively [49], and we estimated the bending rigidity 𝜅
of the layer by using the relation 𝜅 = 𝐸𝛿3/[12(1 − 𝜈2)] which determines 𝜅 in terms of the Young modulus
𝐸, the thickness ℎ, and the Poisson ratio 𝜈 of the layer, respectively [50]. Typical values for rubber-like
materials are 𝐸 ∼ 103 Pa [51], 𝜈 ∼ 0.5 [50]. For a layer with thickness 𝛿 ∼ 10−3 m, this yields the value of 𝜅
in Eq. (25).

4 Discussion

In this work, we introduced a fluId layeR finitE-Element softwarE ( i r e ne ), a novel computational tool
to solve for and predict the physical behavior of fluid layers. i r e ne allows to describe fluid layers in
both a broad range of physical scales—from microscopic, to macroscopic, to geological, or larger—and of
physical scenarios—for example, from laminar to turbulent flows [17].

i r e ne describes fluid layers given by two-dimensional manifolds embedded in three-dimensional
space [53], in which flows can occur both tangentially and normally to the manifold. The partial differential
equations which describe the steady state and dynamics of the fluid are solved by means of the finite
element (FE) method, by using the finite element computational software (FEniCS) library [31]. The
manifold coordinates are the ones in the Monge parameterization [54] in the horizontal plane, in which
the FE mesh lies, see Fig. 1 and Fig. S1B.
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Figure 5: Dynamics of macroscopic, turbulent air flow confined in a moving, laminar channel made of rubber-like
material. Here we use the fixed-height boundary conditions (S46), (S86), (S88), (S101), (S102), (S108) and (S146)
to (S148), with 𝑣1 = 10−2 m/s, 𝑣2 = 0, 𝜎 = 0 Pa m. Model parameters are given by Eq. (25). Channel and obstacle
geometry is given by 𝐿 = 2.2 m, ℎ = 0.41 m, 𝑟 = 5 × 10−2 m and c = (0.2 m, 0.2 m), and they have have been taken
from the FEAT2D DFG 2D-3 benchmark for a flow around a cylinder [52]. The solution at an early time 𝑡 = 1 s, and at
a later time 𝑡 = 10 s is displayed in the left and right column, respectively. Panels A-C show the manifold shape,
surface tension and tangential velocity, following the same notation as Fig. 4. D) Normal velocity 𝑤.
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Because of its modular design, i r e ne can be used to simulate a wide range of fluid-layer models,
which incorporate different physical models for the intrinsic free energy of the layer. Here, we focused
on the Helfrich free energy [22, 53], which models the cost of bending the layer in terms of its mean
curvature [21, 20]. On top of this, i r e ne allows to incorporate, different types of boundary conditions.
In this regard, i r e ne is an open-source project freely available on GitHub, designed with a highly
modular and user-friendly structure, for maximal flexibility and re-usability.

As a first demonstration of the library’s capabilities, we considered a microscopic, low-Reynolds-
number physical regime, by predicting the steady-state shape and flows of a lipidic membrane fluid
[15, 53] with a protein inclusion [38, 39, 40, 41], see Figs. 2 to 4, as well as Figs. S1 to S4. The FE solution
has been first tested against a few benchmark cases, where the two-dimensional problem can be reduced
to one dimension by leveraging radial symmetry. In these cases, the PDEs are reduced to an ordinary
differential equation, which is solved in a numerically exact way, see Figs. S1 to S3. Building on these
examples, in Figs. 2, S4 and 4 we present i r e ne ’s solution for a square geometry, where no numerically
exact solution exists.

In order to illustrate i r e ne ’s predictions for the system dynamics, we focused on a macroscopic
example—air flow in a channel with a circular obstacle [52]. First, we considered the dynamics on a fixed
manifold. In the absence of an obstacle, this problem reduces to Poiseuille flow [17] on a curved surface,
for which we worked out an analytical solution at steady state, which displays laminar flow. i r e ne ’s
results for the velocity field at the channel outflow converge, as the dynamics reaches steady state, to
such analytical solution, see Fig. S5. In the presence of an obstacle in the channel, i r e ne reproduces a
turbulent dynamics—the von Kármán vortex street—see Fig. S6. Interestingly, such von Kármán vortex
street on a fixed, curved manifold present some physical applications on larger, planetary scales. In fact,
the flow of a cloud layer at low-enough altitudes over obstacles, such as islands or isolated mountains,
may give rise to von Kármán vortex streets, visible in satellite images [55, 56]. Given their extension,
which may reach over 400 Km [8], these vortex streets may be influenced by the curvature of the Earth,
and thus of the cloud layer. As a result, the dynamics of this mesoscale phenomenon may be investigated
with i r e ne along the lines of the analysis of turbulent flow on a fixed, curved manifold, which may
provide generale guidance in the understanding of its dynamics and meteorological implications. Second,
we studied turbulent air flow on a manifold which is allowed to deform. This corresponds to a flow
of air, confined in a two-dimensional, flexible layer composed of rubber-like material, see Fig. 5. In
the presence of the obstacle, both the velocity field tangential to the manifold, and the manifold shape,
exhibit a turbulent behavior, in which deformations propagate downstream in the shape of intricate wave
patterns, see Fig. 5A.

As a future direction, we plan to include into i r e ne a three-dimensional, bulk fluid which lies either
above or below the layer, or both. This development would allow to describe a plethora of phenomena,
on multiple physical scales. On the microscopic scale, some of these are the interaction between giant
vesicles [57] and their inner aqueous solution, or between cell membranes and the intracellular cell actin
network [18, 2]. On a macroscopic scale, such extension would allow, for instance, to model how wind
blowing over a fluid layer generates waves, which in turn feed back into turbulent motions of the fluid
both above and below the layer—a mechanism which is at the root at the early stages in the formation of
sea waves [19]. Such development presents two major challenges: The first is the presence of a moving
boundary—the interface between the bulk fluid and the fluid layer. The second is the combination of
an Eulerian description for the bulk fluid, and a Lagrangian description for the fluid layer [58, 59]. An
elegant way to overcome both issues is the arbitrary Lagrangian-Eulerian kinematical description [60, 61],
in which the mesh describing the bulk fluid is modelled as a fictitious, elastic medium [62]. In this
approach, the bulk fluid, the fluid layer and the mesh, are evolved in time simultaneously, according to
dynamical equations defined a simple geometry, in which the interface is flat [63].
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S1 Differential-geometric definitions

In this Section, we will shortly report some basic differential-geometric definitions used in i r e ne ;
details can be found, for instance, in [1, 2, 3]. These definitions are implemented in i r e ne ’s geometry
module.

In i r e ne , we will consider two-dimensional manifoldsℳ embedded in three-dimensional Euclidean
space R3, where ℳ is described by two coordinates 𝑥1 , 𝑥2 through the parameterization [4, 5]

X(𝑥1 , 𝑥2), (S1)

andX is a vector inR3. We will use Einstein notation for indexes 𝑖 , 𝑗 , · · · , which we will use to denote forms,
vectors and tensors. Other coordinates which we will adopt in this manuscript are radial coordinates
𝑥1 = 𝑟, 𝑥2 = 𝜃 in the 𝑥𝑦 plane.

S1.1 Fundamental scalars and tensors
The tangent vectors to the coordinate lines, the normal to ℳ, which we denote by �̂� , the metric tensor 𝑔
and the second fundamental form 𝑏 are, respectively,

e𝑖 =𝜕𝑖X , (S2)

�̂� =
e1 × e2
|e1 × e2| , (S3)

𝑔𝑖 𝑗 =e𝑖 · e𝑗 , (S4)
𝑏𝑖 𝑗 =�̂� · 𝜕𝑖e𝑗 . (S5)

The mean and gaussian curvatures are, respectively,

𝐻 =
1
2𝑏

𝑖
𝑖 (S6)

𝐾 =|𝑏|/|𝑔|, (S7)

where || denotes the determinant, and indexes are raised and lowered with 𝑔.
‗Corresponding author: michele.castellana@curie.fr
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S1.2 Covariant derivative
The covariant derivative of a 𝑛-contravariant and 𝑚-covariant tensor 𝑇 𝑖1···𝑖𝑛𝑗1···𝑗𝑚 is given by

∇𝑖𝑇 𝑖1···𝑖𝑛𝑗1···𝑗𝑚 =𝜕𝑖𝑇
𝑖1···𝑖𝑛
𝑗1···𝑗𝑚

+ Γ𝑖1𝑘𝑖𝑇
𝑘 𝑖2··· 𝑖𝑛
𝑗1···𝑗𝑚 + · · · + Γ

𝑖𝑝
𝑘𝑖𝑇

𝑖1···𝑖𝑝−1 𝑘 𝑖𝑝+1··· 𝑖𝑛
𝑗1···𝑗𝑚 + · · · Γ𝑖𝑛𝑘𝑖𝑇 𝑖1··· 𝑖𝑛−1 𝑘

𝑗1−···𝑗𝑚
− Γ𝑘𝑗1 𝑖𝑇

𝑖1···𝑖𝑛
𝑘 𝑗2···𝑗𝑚 · · · − Γ𝑘𝑗𝑝 𝑖𝑇

𝑖1···𝑖𝑛
𝑗1···𝑗𝑝−1 𝑖 𝑗𝑝+1···𝑗𝑚 − · · · − Γ𝑘𝑗𝑚 𝑖𝑇

𝑖1···𝑖𝑛
𝑗1···𝑗𝑚−1 𝑘

.

(S8)

where
Γ𝑖𝑗𝑘 ≡

1
2 𝑔

𝑖𝑙 (𝜕𝑗 𝑔𝑙𝑘 + 𝜕𝑘 𝑔𝑙 𝑗 − 𝜕𝑙 𝑔𝑗𝑘
)
, (S9)

are the Christoffel symbols of the second kind.

S1.3 Laplace-Beltrami operator
The Laplace-Beltrami operator [6] ∇LB applied to a scalar 𝑓 and a vector 𝑣 reads, respectively,

∇LB 𝑓 = − 1√|𝑔|
𝜕𝑖

(√
|𝑔|𝑔 𝑖 𝑗𝜕𝑗 𝑓

)
, (S10)

∇LB𝑣 𝑖 = −
√
|𝑔|𝑔 𝑖𝑙 𝑔 𝑗𝑘𝜖 𝑗𝑙𝜕𝑘

[√
|𝑔|𝑔𝑚𝑛 𝑔𝑜𝑝𝜖𝑚𝑜𝜕𝑛

(
𝑔𝑝𝑞𝑣𝑞

) ]
, (S11)

where 𝜖𝑖 𝑗 is the Levi-Civita antisymmetric symbol [1].
The Laplace-Beltrami operator is related to the covariant derivative by [6]

∇LB𝜇 = −∇𝑖∇𝑖𝜇. (S12)

S1.4 Curves
Let us consider a curve 𝛾 in ℳ, parametrized with curvilinear coordinate 𝑠; the points of 𝛾 have
coordinates 𝑥 𝑖(𝑠). We will denote by n the vector normal to 𝛾, where n belongs to the tangent bundle of
ℳ [1].

S1.5 Pull-back of the metric
Given a curve 𝛾 in ℳ, the natural mapping which associates to every point of 𝛾 the same point considered
as part of ℳ, see Fig. 1, yields a mapping 𝑠 → 𝑥 𝑖(𝑠). The pull-back of 𝑔 on 𝛾 is then

ℎ =
d𝑥 𝑖
d𝑠

d𝑥 𝑗
d𝑠 𝑔𝑖 𝑗 . (S13)

In particular, this definition applies to the case where 𝛾 is a boundary of ℳ, see Fig. 1. In what follows,
we will provide two examples of pull-backs of the metric on specific boundaries.

S1.5.1 Pull-back on a rectangular edge

Consider the lower edge 𝜕Ω in Fig. 1, parameterized with the coordinate 𝑠 = 𝑥, where 0 ≤ 𝑥 ≤ 𝐿 is the
abscissa in the 𝑥1𝑥2 plane. Then

𝑥1(𝑠) =𝑠,
𝑥2(𝑠) =0,

(S14)

and ℎ is given by Eqs. (S13) and (S14).
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S1.5.2 Pull-back on a circle

Consider a circular boundary 𝜕Ω given by a circle of radius 𝑟 centered at 𝑐𝑟 , see Fig. 1. We parameterize
ℳ with Cartesian coordinates and 𝜕Ω with the coordinate 𝑠 = 𝜃, where 0 ≤ 𝜃 < 2𝜋 is the angle of polar
coordinates in the 𝑥1𝑥2 plane centered at 𝑐𝑟 , see Section S1.7. Then

𝑥1(𝑠) =𝑐1
𝑟 + 𝑟 cos 𝑠,

𝑥2(𝑠) =𝑐2
𝑟 + 𝑟 sin 𝑠,

(S15)

and ℎ is given by Eqs. (S13) and (S15).

S1.6 Integration measures
We will denote the integral of a quantity over Ω by

⟨·⟩Ω =
∫
Ω

√
|𝑔|d𝑥1d𝑥2 ·, (S16)

and the integral over a boundary 𝜕Ω by

⟨·⟩𝜕Ω =
∫
𝜕Ω

d𝑠
√
|ℎ| ·, (S17)

where ℎ is the pull-back of 𝑔 on 𝜕Ω, see Section S1.5. The quantity d𝑠
√
ℎ has the geometrical meaning of

the length of the line element d𝑠 of 𝜕Ω with respect to the Euclidean metric in R3.
The following identity for integration by parts [7] will be used repeatedly:〈

𝑈∇𝑖𝑉 𝑖
〉
Ω = − 〈

𝑉 𝑖∇𝑖𝑈
〉
Ω + 〈

𝑈𝑉 𝑖𝑛𝑖
〉
𝜕Ω , (S18)〈

𝑇 𝑖 𝑗∇𝑖𝑊𝑗
〉
Ω = − 〈

𝑊𝑗∇𝑖𝑇 𝑖 𝑗
〉
Ω + 〈

𝑛𝑖𝑇 𝑖 𝑗𝑊𝑗
〉
𝜕Ω , (S19)

where𝑈 , 𝑉 ,𝑊 and 𝑇 are a scalar, a vector, a one-form and two-contravariant tensor, respectively. Also,
𝑛 is a vector field in the tangent bundle of ℳ normal to 𝜕Ω and directed outside ℳ, see Fig. 1, and
normalized to unity:

𝑛 𝑖𝑛𝑖 = 1. (S20)

S1.7 Coordinates
One possible coordinate choice is given by the Monge parameterization [8, 3], where 𝑥1 = 𝑥 and 𝑥2 = 𝑦
are the coordinates in the Cartesian R2 plane, see Fig. 1. In this parametrization, Eq. (S1) reads 𝑋1 = 𝑥,
𝑋2 = 𝑦 and 𝑋3 = 𝑧(𝑥, 𝑦), and the tangent vectors to ℳ, Eq. (S2), are

e1 =(1, 0, 𝜕1𝑧),
e2 =(0, 1, 𝜕2𝑧). (S21)

For radially symmetric variational problems (VPs), see for example Figs. S1 to S3, we will use radial
coordinates, i.e., 𝑥1 = 𝑟, 𝑥2 = 𝜃.

S1.8 Geometries
In what follows, we will discuss the types of geometries considered in i r e ne .

1. Ring. ℳ is defined on a ring on the R2 plane, with radii 𝑟 and 𝑅 and delimited by two concentric
circles centered at the origin.

2. Rectangle.
ℳ is defined on a rectangle on the R2 plane with sizes 𝐿 and ℎ, and whose bottom-left vertex
coincides with the origin.

3. Rectangle with circular hole.
ℳ is defined on the rectangle of Case 2, with a circular hole centered at c and with radius 𝑟, see
Fig. 1.
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S2 Forces
In order to obtain the forces exerted on an element of 𝜕Ω or on an element of 𝜕Ω, we introduce the
rate-of-deformation tensor [9, 5]

𝑑𝑖 𝑗 ≡ 1
2

(∇𝑖𝑣 𝑗 + ∇𝑗𝑣𝑖
) − 𝑤𝑏𝑖 𝑗 , (S22)

and the momentum-flux tensor [10]
Π𝑖 𝑗 ≡ −𝜎𝑔𝑖 𝑗 − 2𝜂 𝑑𝑖 𝑗 . (S23)

The tangential and normal viscous force exerted by the fluid on a fluid element [6] are, respectively,

𝑓𝜂
𝑖 ≡2𝜂∇𝑗𝑑𝑖 𝑗 (S24)
=𝜂

[−∇LB𝑣 𝑖 − 2
(
𝑏 𝑖 𝑗 − 2𝐻 𝑔 𝑖 𝑗∇𝑗𝑤

) + 2𝐾𝑣 𝑖
]
, (S25)

f𝜂 ≡2𝜂
[(∇𝑖𝑣 𝑗)𝑏𝑖 𝑗 − 2𝑤(2𝐻2 − 𝐾)] . (S26)

The elastic force exerted by the fluid on a fluid element, and directed along the normal �̂� of ℳ, is [6]

𝑓𝜅 ≡ 2𝜅
[∇LB𝐻 − 2𝐻(𝐻2 − 𝐾)] . (S27)

The force, due to surface tension and viscosity, exerted on an element d𝑠 of a curve 𝛾 ∈ ℳ, see
Section S1.4, reads

d𝐹 𝑖 = Π𝑖 𝑗n𝑗
√
|ℎ|d𝑠, (S28)

where n and ℎ are defined in Sections S1.4 and S1.5, respectively.

S3 Variational formulations

S3.1 Steady state
S3.1.1 Steady state with no flows

By multiplying Eq. (16) by
√|𝑔| and by the test functions 𝜈𝑧 , 𝜈𝜔 𝑖 and 𝜈𝜇 for the fields, 𝑧, 𝜔𝑖 and 𝜇,

respectively, and by taking the average (S16), we obtain〈{
𝜅

[∇LB𝜇 − 2𝜇(𝜇2 − 𝐾)] + 𝜎𝜇
}
𝜈𝑧

〉
Ω =0, (S29)〈(𝜔𝑖 − ∇𝑖𝑧)𝜈𝜔 𝑖

〉
Ω =0, (S30)
𝐹𝜇 =0, (S31)

where
𝐹𝜇 ≡ 〈[𝜇 − 𝐻(𝜔)]𝜈𝜇

〉
Ω + 𝐺𝜇 , (S32)

and
𝐺𝜇 ≡ 𝛼

𝑙

〈[𝜇 − 𝐻(𝜔)]𝜈𝜇
〉
𝜕Ω . (S33)

Here, 𝐺𝜇 is a penalty term used to enforce Eq. (15) on 𝜕Ω, 𝛼 is a constant coefficient and 𝑙 the smallest cell
diameter across all cells in the mesh [11]. Throughout our analysis, we will chose the constant 𝛼 relative
to penalty terms large enough in such a way that the boundary condition (BC) enforced by the penalty
term is satisfied [12, 13].

We observe that, in the VP above, the test functions of scalar fields, e.g., 𝑧 and 𝜇, are scalars, and the
test function of the one form 𝜔, 𝜈𝜔, is a vector. As a result, the mixed VP [14] given by Eqs. (S29) to (S31)
preserves the covariance of Eq. (16).

As we discussed in Section 3.1.1, the presence of second derivatives in the term ∇LB𝜇 of Eq. (S29)
would lead to an ill-posed VP. We will thus integrate by parts that term as follows〈(∇LB𝜇)𝜈𝑧

〉
Ω = − 〈(∇𝑖∇𝑖𝜇)𝜈𝑧〉Ω
=

〈(∇𝑖𝜇)∇𝑖𝜈𝑧〉Ω − 〈(∇𝑖𝜇)𝑛𝑖𝜈𝑧〉𝜕Ω , (S34)
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where in the first line we substituted Eq. (S12) and in the second we used Eq. (S18).
We now integrate by parts the second term in Eq. (S30). Given that Eq. (S30) involves a first derivative,

such by-parts integration is not necessary because of the second-derivative issue discussed above.
However, this integration by parts is convenient, because it will allow us to impose some BCs in weak
form [15, 14], and thus to make i r e ne ’s weak form more portable with respect to different types of BCs.
Proceeding along the same lines, in what follows we will perform other by-parts integrations because of
such portability argument.

Proceeding along the same lines for the second term in Eq. (S30), we have〈(∇𝑖𝑧)𝜈𝜔 𝑖〉Ω = − 〈
𝑧 ∇𝑖𝜈𝜔 𝑖

〉
Ω + 〈

𝑛𝑖 𝑧 𝜈𝜔 𝑖
〉
𝜕Ω , (S35)

where we used Eq. (S18).
Combining Eqs. (S29) to (S31), (S34) and (S35), we obtain the functionals for the VP:

𝐹𝑤 ≡ 〈
𝜅(∇𝑖𝜇)∇𝑖𝜈𝑧 +

[−2𝜅𝜇(𝜇2 − 𝐾) + 𝜎𝜇
]
𝜈𝑧

〉
Ω − 𝜅

〈(∇𝑖𝜇)𝑛𝑖𝜈𝑧〉𝜕Ω , (S36)

𝐹𝜔 ≡ 〈
𝜔𝑖𝜈𝜔

𝑖 + 𝑧∇𝑖𝜈𝜔 𝑖
〉
Ω − 〈

𝑛𝑖 𝑧 𝜈𝜔 𝑖
〉
𝜕Ω . (S37)

This VP, whose BCs will be discussed in the following, is implemented in the steady_state_no_flow
module.

In order to demonstrate i r e ne ’s flexibility as for the implementation of BCs, in what follows we will
specify two sets of BCs for the VP. Here an in what follows, all BCs yield the same number of constraints
for the partial differential equation (PDE) solution [16].

1. Fixed-height boundary conditions.

(a) Ring geometry.
For the ring geometry of Case 1 in Section S1.8, we consider the BCs

𝑧 = 𝑧 on 𝜕Ω , (S38)
𝑧 = 𝑧 on 𝜕Ω , (S39)

𝑛 𝑖∇𝑖𝑧 =𝜓 on 𝜕Ω (S40)
𝑛 𝑖∇𝑖𝑧 =𝜓 on 𝜕Ω . (S41)

Equations (S38) and (S39) fix the height of the manifold at both the inner and outer circle, 𝜕Ω
and 𝜕Ω , respectively, while Eqs. (S40) and (S41) fix the derivative of the manifold along the
normal 𝑛 at both circles.
The resulting boundary-value problem (BVP) is given by

𝐹𝑤 =0, (S42)
𝐹𝜔 =0, (S43)
𝐹𝜇 =0, (S44)

in which the BCs (S38) and (S39) are enforced as Dirichlet BCs. In addition, Eqs. (S40) and (S41)
are imposed by means of the penalty method [11], by adding to the VP the functional

𝐺𝜔 ≡ 𝛼
𝑙

[
⟨(𝑛 𝑖𝜔𝑖 − 𝜓 )𝑛 𝑗𝜈𝜔 𝑗⟩𝜕Ω + ⟨(𝑛 𝑖𝜔𝑖 − 𝜓 )𝑛 𝑗𝜈𝜔 𝑗⟩𝜕Ω

]
, (S45)

in which we used the definition (14).
This VP is solved in the steady_state_no_flowmodule as variational_problem_bc_ring,
see Fig. S1.
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(b) Rectangle-with-circle geometry.
For the geometry of Case 3 in Section S1.8, we consider the BCs

𝑧 = 𝑧 on 𝜕Ω , (S46)
𝑧 = 𝑧 on 𝜕Ω , (S47)

𝑛 𝑖∇𝑖𝑧 =𝜓 on 𝜕Ω . (S48)
𝑛 𝑖∇𝑖𝑧 =𝜓 on 𝜕Ω , (S49)

where, along the lines of Case 1a, Eqs. (S46) to (S49) fix the manifold height and slope at both
the circle and square boundary.
Proceeding along the lines of Case 1a, the BVP is given by Eqs. (S42) to (S44), with Dirichlet
BCs given by Eqs. (S46) and (S47), and a penalty term

𝐺𝜔 ≡ 𝛼
𝑙

[
⟨(𝑛 𝑖𝜔𝑖 − 𝜓 )𝑛 𝑗𝜈𝜔 𝑗⟩𝜕Ω + ⟨(𝑛 𝑖𝜔𝑖 − 𝜓 )𝑛 𝑗𝜈𝜔 𝑗⟩𝜕Ω

]
, (S50)

which enforces Eqs. (S48) and (S49).
This VP is solved in thesteady_state_no_flowmodule asvariational_problem_bc_square_a,
see Fig. 2.

2. Fixed-slope boundary conditions.
Here, the profile of ℳ is fixed at the outer boundary only, where we fix also its derivative along 𝑛,
cf. Fig. 1. At the inner boundary, both components of the manifold gradient are fixed.
For the sake of conciseness, we discuss the VP for the rectangle-with-circle geometry of Case 3 in
Section S1.8 only. We consider the BCs

Eq. (S46),
∇𝑖𝑧 =𝜙𝑖 on 𝜕Ω , (S51)

𝑛 𝑖∇𝑖𝑧 =𝜓 on 𝜕Ω . (S52)

The BVP is given by Eqs. (S42) to (S44), where we enforce Eqs. (S46) and (S51) as Dirichlet BCs and
Eq. (S52) with a penalty term

𝐺𝜔 =
𝛼
𝑙
⟨(𝑛 𝑖𝜔𝑖 − 𝜓)𝑛 𝑗𝜈𝜔 𝑗⟩𝜕Ω . (S53)

This VP is solved in the steady_state_no_flow module as variational_problem_bc_square_b,
see Fig. 3.

S3.1.2 Steady state with flows

In this Section, we will derive the variational formulation for Eqs. (9) to (12), proceeding along the same
lines as Section S3.1.1.

We multiply Eqs. (18) to (21) by
√|𝑔| and by the test functions 𝜈𝜎, 𝜈𝑣 𝑖 , 𝜈𝑤 , 𝜈𝑧 , 𝜈𝜔 𝑖 and 𝜈𝜇 for the fields,

𝜎, 𝑣, 𝑤, 𝑧, 𝜔 and 𝜇, respectively, take the average (S16) of both sides of each equation, and obtain
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Figure S1: Steady state in the absence of flows for a lipidic membrane with a trans-membrane protein inclusion on
a ring geometry, with fixed-height boundary conditions, Eqs. (S38) to (S41). The solution has been obtained with
parameters (17) and 𝑧 = −0.5𝜇m, 𝑧 = 0𝜇m, 𝜓 = −0.1, 𝜓 = 0, 𝜎 = 1 Pa𝜇m, and outer-circle radius 𝑅 = 1𝜇m,
where both circles are centered at the origin. A) Membrane profile 𝑧 (surface) and trans-membrane protein (red
cone), where the color code represents the membrane height. The black curves along the surface serve as guides for
the eye. B) Mesh and protein. For the sake of clarity, the shown mesh is coarser than the one used to produce the
solution. C) Membrane height 𝑧 as a function of the radial coordinate 𝑟, from i r e ne (black) and the numerically
exact solution (red). D) Same as C, for the membrane-profile derivative 𝜔𝑟 . E) Same as C, for the mean curvature 𝐻.

7



〈(∇𝑖𝑣 𝑖 − 2𝜇𝑤)𝜈𝜎
〉
Ω =0, (S54)〈{

𝜌
(
𝑣 𝑗∇𝑗𝑣 𝑖 − 2𝑣 𝑗𝑤𝑏 𝑖𝑗 − 𝑤∇𝑖𝑤

)
− ∇𝑖𝜎 −

−𝜂 [−∇LB𝑣 𝑖 − 2
(
𝑏 𝑖 𝑗 − 2𝜇 𝑔 𝑖 𝑗∇𝑗𝑤

) + 2𝐾𝑣 𝑖
]}

𝜈𝑣 𝑖
〉
Ω =0 (S55)〈{

𝜌𝑣 𝑖
(
𝑣 𝑗𝑏 𝑗𝑖 + ∇𝑖𝑤

) − 2𝜅
[∇LB𝜇 − 2𝜇(𝜇2 − 𝐾)] − 2𝜎𝜇 −

−2𝜂
[(∇𝑖𝑣 𝑗)𝑏𝑖 𝑗 − 2𝑤(2𝜇2 − 𝐾)]} 𝜈𝑤〉

Ω =0, (S56)〈[
𝑤 (�̂�3 − �̂� 𝑖𝜔𝑖)

]
𝜈𝑧

〉
Ω =0, (S57)

Eqs. (S30) and (S31),

We now integrate by parts some terms in Eqs. (S30), (S31) and (S54) to (S57). The convective and
surface-tension term in the left-hand side (LHS) of Eq. (S55), and the convective and curvature term in
the LHS of Eq. (S56), can be rewritten by using Eqs. (S12) and (S18) as

〈
𝑤(∇𝑖𝑤)𝜈𝑣 𝑖

〉
Ω =

1
2

〈[∇𝑖(𝑤2)]𝜈𝑣 𝑖
〉
Ω

=
1
2

[− 〈
𝑤2∇𝑖𝜈𝑣 𝑖

〉
Ω + 〈

𝑛 𝑖𝑤2𝜈𝑣 𝑖
〉
𝜕Ω

]
, (S58)〈(∇𝑖𝜎)𝜈𝑣 𝑖〉Ω = − 〈

𝜎∇𝑖𝜈𝑣 𝑖
〉
Ω + 〈

𝑛 𝑖𝜎𝜈𝑣 𝑖
〉
𝜕Ω , (S59)〈

𝑣 𝑖(∇𝑖𝑤)𝜈𝑤
〉
Ω = − 〈

𝑤[∇𝑖(𝑣 𝑖𝜈𝑤)]
〉
Ω + 〈

𝑛𝑖𝑣 𝑖𝑤𝜈𝑤
〉
𝜕Ω , (S60)〈(∇𝑖∇𝑖𝜇)𝜈𝑤〉

Ω = − 〈(∇𝑖𝜇)∇𝑖𝜈𝑤〉
Ω + 〈

𝑛 𝑖(∇𝑖𝜇)𝜈𝑤
〉
𝜕Ω , (S61)

respectively. The viscous term in Eq. (S55) can be rewritten as〈{
𝜂

[−∇LB𝑣 𝑖 − 2
(
𝑏 𝑖 𝑗 − 2𝜇 𝑔 𝑖 𝑗∇𝑗𝑤

) + 2𝐾𝑣 𝑖
]}

𝜈𝑣 𝑖
〉
Ω =

2𝜂
〈(∇𝑗𝑑𝑖 𝑗)𝜈𝑣 𝑖

〉
Ω = (S62)

2𝜂
(
− 〈

𝑑𝑖 𝑗∇𝑗𝜈𝑣 𝑖
〉
Ω + 〈

𝑛 𝑗𝑑𝑖 𝑗𝜈𝑣 𝑖
〉
𝜕Ω

)
(S63)

where in the first line we used Eqs. (15), (S24) and (S25), and the second line we used Eq. (S19).
Combining Eqs. (S43), (S44), (S54) to (S58), (S62) and (S63), we define the variational functionals

𝐹𝜎 ≡ 〈(∇𝑖𝑣 𝑖 − 2𝜇𝑤)𝜈𝜎
〉
Ω , (S64)

𝐹𝑣 ≡
〈
𝜌

(
𝑣 𝑗∇𝑗𝑣 𝑖 − 2𝑣 𝑗𝑤𝑏 𝑖𝑗

)
𝜈𝑣 𝑖 + 2𝜂 𝑑𝑖 𝑗∇𝑗𝜈𝑣 𝑖 +

(𝜌
2𝑤

2 + 𝜎
)
∇𝑖𝜈𝑣 𝑖

〉
Ω
−

−
〈
𝑛 𝑗

[
𝑔 𝑖 𝑗

(𝜌
2𝑤

2 + 𝜎
)
+ 2𝜂 𝑑𝑖 𝑗

]
𝜈𝑣 𝑖

〉
𝜕Ω

(S65)

𝐹𝑤 ≡ 〈{
𝜌 𝑣 𝑖𝑣 𝑗𝑏 𝑗𝑖 + 4𝜅 𝜇(𝜇2 − 𝐾) − 2𝜎𝜇 −

−2𝜂
[(∇𝑖𝑣 𝑗)𝑏𝑖 𝑗 − 2𝑤(2𝜇2 − 𝐾)]} 𝜈𝑤 − 2𝜅(∇𝑖𝜇)∇𝑖𝜈𝑤 − 𝜌𝑤∇𝑖

(
𝑣 𝑖𝜈𝑤

)〉
Ω +

+ 〈
𝜌 𝑛𝑖𝑣 𝑖𝑤𝜈𝑤 + 2𝜅𝑛𝑖(∇𝑖𝜇)𝜈𝑤

〉
𝜕Ω , (S66)

𝐹𝑧 ≡
〈[
𝑤 (�̂�3 − �̂� 𝑖𝜔𝑖)

]
𝜈𝑧

〉
Ω , (S67)

where in Eq. (S65) we substituted Eqs. (S58), (S59), (S62) and (S63), and in Eq. (S66) we used Eqs. (S60)
and (S61).

We will consider the following geometries and BCs:

1. Fixed-height BCs.
Here, the manifold height on the whole boundary is fixed, together with its derivative along the
normal 𝑛 at the boundary, cf. Case 1 in Section S3.1.1.

8



(a) Ring geometry.
For the geometry of Case 1 in Section S1.8, we consider the BCs

𝑣 𝑖 =𝑣 𝑖 on 𝜕Ω , (S68)

𝑛 𝑖𝑣𝑖 = 𝜒 on 𝜕Ω , (S69)
𝑤 =0 on 𝜕Ω, (S70)
𝜎 = 𝜎 on 𝜕Ω , (S71)
𝑧 = 𝑧 on 𝜕Ω , (S72)
𝑧 = 𝑧 on 𝜕Ω , (S73)

𝑛 𝑖∇𝑖𝑧 =𝜓 on 𝜕Ω (S74)
𝑛 𝑖∇𝑖𝑧 =𝜓 on 𝜕Ω (S75)

From the physical standpoint, Equations (S68) to (S71) fix the boundary values of the velocity
and surface tension, while Eqs. (S72) to (S75) are fixed-height BCs, cf. Eqs. (S46) to (S49).
The resulting VP is given by

𝐹𝜎 =0, (S76)
𝐹𝑣 =0, (S77)
𝐹𝑤 =0, (S78)
𝐹𝑧 =0, (S79)

Eqs. (S43) and (S44), (S80)

In Eqs. (S43), (S44) and (S76) to (S79), we impose Eqs. (S68) and (S70) to (S73) as Dirichlet BCs.
The BCs (S69), (S74) and (S75) are enforced with the penalty method by adding, respectively,
the functionals

𝐺𝑣 ≡𝛼
𝑙
⟨(𝑛 𝑖𝑣𝑖 − 𝜒 )𝑛 𝑗𝜈𝑣 𝑗⟩𝜕Ω , (S81)

𝐺𝜔 ≡𝛼
𝑙

[
⟨(𝑛 𝑖𝜔𝑖 − 𝜓 )𝑛 𝑗𝜈𝜔 𝑗⟩𝜕Ω + ⟨(𝑛 𝑖𝜔𝑖 − 𝜓 )𝑛 𝑗𝜈𝜔 𝑗⟩𝜕Ω

]
, (S82)

in which we used the definition (14).
This VP is solved in the steady_state_flow module as variational_problem_bc_ring_1,
see Fig. S2

(b) Square geometry.
For the geometry of Case 3 in Section S1.8, we consider the BCs

𝑣1 =𝑣 on 𝜕Ω , (S83)
𝑣2 =0 on 𝜕Ω , (S84)

𝑛 𝑖𝑣𝑖 = 0 on 𝜕Ω ∪ 𝜕Ω (S85)
𝑛𝑖Π𝑖1 =0 on 𝜕Ω , (S86)

𝑤 =0 on 𝜕Ω, (S87)
𝜎 =𝜎 on 𝜕Ω , (S88)
𝑧 =0 on 𝜕Ω, (S89)

𝑛 𝑖∇𝑖𝑧 =𝜓 on 𝜕Ω (S90)
𝑛 𝑖∇𝑖𝑧 =𝜓 on 𝜕Ω (S91)
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From the physical standpoint, Equations (S83) to (S85), (S87) and (S88) fix the boundary values
of the velocity and surface tension, while Eq. (S86) enforces zero traction along the 𝑥 axis at
outflow, 𝜕Ω [10]. Finally, Eqs. (S89) to (S91) impose fixed height, cf. Eqs. (S38) to (S41).
First, Eq. (S86) is imposed as a natural BC: By using Eqs. (S23) and (S88) we obtain

𝑛𝑖𝑑𝑖1 = 0 on 𝜕Ω , (S92)

and by substituting Eq. (S92) into the boundary term of Eq. (S65), we obtain [15, 14]
〈
𝜌

(
𝑣 𝑗∇𝑗𝑣 𝑖 − 2𝑣 𝑗𝑤𝑏 𝑖𝑗

)
𝜈𝑣 𝑖 + 2𝜂 𝑑𝑖 𝑗∇𝑗𝜈𝑣 𝑖 +

(𝜌
2𝑤

2 + 𝜎
)
∇𝑖𝜈𝑣 𝑖

〉
Ω
−

−
〈(𝜌

2𝑤
2 + 𝜎

)
𝑛 𝑖𝜈𝑣 𝑖

〉
𝜕Ω

−
−⟨2𝜂 𝑛 𝑗𝑑𝑖 𝑗𝜈𝑣 𝑖⟩𝜕Ω ∪𝜕Ω ∪𝜕Ω −

−⟨2𝜂 𝑛 𝑗𝑑𝑖2𝜈𝑣 𝑖⟩𝜕Ω = 0.

(S93)

The variational problem is thus given by Eqs. (S43), (S44), (S76), (S78), (S79) and (S93).
In such variational equations, Eqs. (S83), (S84) and (S87) to (S89) are imposed as Dirichlet BCs,
while Eqs. (S85), (S90) and (S91) are enforced with the penalty method, by adding to the VP
the functionals

𝐺𝑣 ≡𝛼
𝑙
⟨𝑛 𝑖𝑣𝑖𝑛 𝑗𝜈𝑣 𝑗⟩𝜕Ω ∪𝜕Ω , (S94)

𝐺𝜔 ≡𝛼
𝑙

[
⟨(𝑛 𝑖𝜔𝑖 − 𝜓 )𝑛 𝑗𝜈𝜔 𝑗⟩𝜕Ω + ⟨(𝑛 𝑖𝜔𝑖 − 𝜓 )𝑛 𝑗𝜈𝜔 𝑗⟩𝜕Ω

]
, (S95)

in which we used Eq. (14).
This VP is solved in the steady_state_flowmodule as variational_problem_bc_square_a,
see Fig. S4.

2. Fixed-slope BCs.

(a) Ring geometry.
For the geometry of Case 1 in Section S1.8, we consider the BCs

Eqs. (S68), (S69) and (S73),
𝑤 =0 on 𝜕Ω , (S96)
𝜎 = 𝜎 on 𝜕Ω , (S97)

∇𝑖𝑧 =𝜓𝑖 on 𝜕Ω , (S98)
∇𝑖𝑧 =𝜓𝑖 on 𝜕Ω , (S99)

where Eqs. (S73), (S98) and (S99) impose fixed slope, cf. Eqs. (S46), (S51) and (S52).
The resulting BVP is given by Eqs. (S42) to (S44) and (S76) to (S79), where Eqs. (S68), (S73),
(S96) and (S97) are imposed as Dirichlet BCs, and Eqs. (S69), (S98) and (S99) are enforced by
adding the penalty terms in Eqs. (S81) and (S82), in which we used Eq. (14).
This VP is solved in the steady_state_flow module as variational_problem_bc_ring_2,
see Fig. S3.

(b) Square geometry.
For the geometry of Case 3 in Section S1.8, we consider the BCs
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Eqs. (S83), (S84), (S86) and (S88)
𝑣 𝑖 = 0 on 𝜕Ω , (S100)

𝑛 𝑖𝑣𝑖 = 0 on 𝜕Ω , (S101)
𝑤 =0 on 𝜕Ω , (S102)
𝑧 =0 on 𝜕Ω , (S103)

∇𝑖𝑧 =𝜙𝑖 on 𝜕Ω , (S104)
𝑛 𝑖∇𝑖𝑧 =𝜓 on 𝜕Ω . (S105)

Proceeding along the lines of Case 1b, Eq. (S86) is enforced as a natural BC, and we obtain
Eq. (S93). As a result, the VP is given by Eqs. (S43), (S44), (S76), (S78), (S79) and (S93).
In this VP, Eqs. (S83), (S84), (S88), (S100) and (S102) to (S104) are imposed as Dirichlet BCs,
Eq. (S86) as a natural BC, and Eqs. (S101) and (S105) by adding the penalty terms

𝐺𝑣 ≡𝛼
𝑙
⟨𝑛 𝑖𝑣𝑖𝑛 𝑗𝜈𝑣 𝑗⟩𝜕Ω , (S106)

𝐺𝜔 ≡𝛼
𝑙
⟨(𝑛 𝑖𝜔𝑖 − 𝜓)𝑛 𝑗𝜈𝜔 𝑗⟩𝜕Ω , (S107)

where we substituted Eq. (14).
This VP is solved in the steady_state_flowmodule as variational_problem_bc_square_b,
see Fig. 4.

S3.2 Dynamics
S3.2.1 Fixed manifold

In this Section, we will discuss the solution of Eqs. (23) and (24) for two geometries and BCs:

1. Rectangular geometry.
For the geometry of Case 2 in Section S1.8, we consider, at any time 𝑡, the BCs

𝑣 𝑖 =𝑣 𝑖 on 𝜕Ω , (S108)
𝑣 𝑖 =0 on 𝜕Ω , (S109)

𝑛 𝑗Π𝑗𝑖 =0 on 𝜕Ω , (S110)
𝜎 =0 on 𝜕Ω , (S111)

where Eq. (S110) enforces zero traction [10].
The BCs relative to the time variable are

𝑣 𝑖(x, 𝑡 = 0) =𝑣 𝑖0(x), (S112)
𝜎(x, 𝑡 = 0) =𝜎0(x), (S113)

which are intended to hold for all x ∈ Ω.
In what follows, we discretize time by setting

𝑡𝑛 ≡ 𝑛 Δ𝑡 , (S114)
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Figure S2: Steady state in the presence of flows for a lipidic membrane on a circular geometry with a with a
trans-membrane protein inclusion, which acts as a source of membrane flow. Here we impose fixed-height boundary
conditions, Eqs. (S38) to (S41). The solution is obtained with parameters (17), 𝑣 𝑖 = 102 �̂� 𝑖 𝜇m/𝑠, 𝜒 = 2𝜇m/𝑠,
𝜎 = 1 Pa𝜇m, 𝑧 = −0.1𝜇m, 𝑧 = 0, 𝜓 = −0.1, 𝜓 = 0, and outer ring radius 𝑅 = 0.5𝜇m, where both circles are
centered at the origin. A) Membrane profile 𝑧. B) Surface tension 𝜎. C) Tangential velocity 𝑣, displayed on top of the
surface of A. The direction of the velocity field is represented by the arrows, and the modulus by the arrow color. In
D-H, we show the solution for 𝑣, 𝜎, 𝑧, 𝜔𝑟 and 𝜇 from i r e ne and from the numerically exact solution.
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Figure S3: Steady state in the presence of flows for a lipidic membrane on a ring geometry, with a trans-
membrane protein inclusion, which acts as a sink of membrane flows. Here, we impose fixed-slope boundary
conditions (S68), (S69), (S73) and (S96) to (S99). The solution is obtained with parameters (17), 𝑣 𝑖 = −�̂� 𝑖 𝜇m/𝑠,
𝑣 𝑖 = −4.02 �̂� 𝑖 × 10−2 𝜇m/𝑠, 𝜎 = 1 Pa𝜇m, 𝑧 = 0, 𝜓𝑖 = 0.1 �̂� 𝑖 , 𝜓𝑖 = 0. Ring geometry is the same as in Fig. S1,
with 𝑅 = 0.25𝜇m. Panels follow the same notation as Fig. S2.
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Figure S4: Steady state in the presence of flows for a lipidic membrane with a trans-membrane protein on a square
geometry, with fixed-height boundary conditions, Eqs. (S83) to (S91). The solution has been obtained with parameters
(17), 𝑣 = 10𝜇m/𝑠, 𝜎 = 1Pa𝜇m, 𝜓 = 0, 𝜓 = −0.1, rectangle and obstacle geometry is the same as in Fig. 2. Panels
follow the same notation as Fig. S2.
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where 𝑛 = 0, 1, · · · , and set
𝜎𝑛 ≡𝜎(𝑡𝑛),

𝜎𝑛−1/2 ≡𝜎
(
𝑡𝑛 + 𝑡𝑛−1

2

)
,

𝜎𝑛−3/2 ≡𝜎
(
𝑡𝑛−1 + 𝑡𝑛−2

2

)
,

(S115)

and similarly for other quantities.
We will now rewrite the BVP in discrete form, yielding a set of equations exact to 𝒪(Δ𝑡).
The discrete form of Eqs. (23) and (24) is

∇𝑖𝑣𝑛, 𝑖 = 0, (S116)

𝜌

(
𝑣𝑛, 𝑖 − 𝑣𝑛−1, 𝑖

Δ𝑡
+ 3

2𝑣
𝑛−1, 𝑗∇𝑗𝑣𝑛−1, 𝑖 − 1

2𝑣
𝑛−2, 𝑗∇𝑗𝑣𝑛−2, 𝑖

)
=

= ∇𝑖𝜎𝑛−1/2 + 𝑓𝜂
𝑖
(
𝑣𝑛 + 𝑣𝑛−1

2

)
, (S117)

where in Eq. (S117) we discretized the nonlinear Navier-Stokes (NS) term with the Crank Nicolson
(CN) method [17], which improves the stability of the solution scheme [14]. Also, we wrote explicitly
the dependence of the viscous force in Eqs. (S24) and (S25) on the velocity field.
The discrete version of the BCs (S108) to (S113), is

𝑣𝑛, 𝑖 =𝑣 𝑛, 𝑖 on 𝜕Ω , (S118)
𝑣𝑛, 𝑖 =0 on 𝜕Ω , (S119)

𝑛 𝑗Π𝑗𝑖
(
𝑣𝑛 + 𝑣𝑛−1

2 , 𝜎𝑛−1/2
)
=0 on 𝜕Ω , (S120)

𝜎𝑛−1/2 =0 on 𝜕Ω , (S121)
𝑣0, 𝑖 =𝑣 𝑖0(x), (S122)

𝜎−1/2 =𝜎0(x). (S123)

It is important to point out that in Eqs. (S116) to (S123), we solve for the velocity at integer time
steps 𝑛 = 0, 1, · · · , and for the surface tension at semi-integer steps 𝑛 = 1/2, 3/2, · · · [14].
In order to solve Eqs. (S116) and (S117) in a stable and efficient way, we will use a splitting scheme
[14], in which Eq. (S117) and Eq. (S116) are solved separately. Among the proposed splitting schemes
[18, 19], we will employ the incremental pressure correction scheme (IPCS) [20], which we will
detail in the following—see [14, 20] for details. We observe that IPCS has been developed for the
NS equations, which involve the pressure field, whose analog in our analysis is the surface-tension
field; in what follow we will thus use the terms ’pressure’ to denote the surface tension, in order to
stick with the original terminology.
For any given 𝑛, we set

𝜎∗ ≡ 𝜎𝑛−3/2 , (S124)

and introduce the auxiliary velocity 𝑣, which represents an approximation of the solution 𝑣𝑛 . We
will then split the BVPs of Eqs. (S116) to (S121) into the following steps:

(a) Approximated velocity.
We consider the following BVP for 𝑣:
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𝜌

[
𝑣 𝑖 − 𝑣𝑛−1, 𝑖

Δ𝑡
+

(
3
2𝑣

𝑛−1, 𝑗 − 1
2𝑣

𝑛−2, 𝑗
)
∇𝑗𝑉 𝑖

]
=∇𝑖𝜎∗ + 𝑓𝜂

𝑖(𝑉), (S125)

𝑣 𝑖 =𝑣 𝑛, 𝑖 on 𝜕Ω , (S126)

𝑣 𝑖 =0 on 𝜕Ω , (S127)
𝑛 𝑗Π𝑗𝑖(𝑉, 𝜎∗) =0 on 𝜕Ω , (S128)

where

𝑉 𝑖 ≡ 𝑣 𝑖 + 𝑣𝑛−1, 𝑖

2 . (S129)

Equation (S125) is obtained from the original BVP of Eqs. (S117) to (S120) by replacing the
surface tension with the known field 𝜎∗, and the velocity field 𝑣 with either 𝑣 or 𝑉 . The
resulting solution 𝑣 thus constitutes an approximation for the exact velocity field 𝑣, and the
two differ by 𝒪(Δ𝑡).

(b) Pressure correction.
Subtracting Eqs. (S117) and (S125), we obtain

𝜌

Δ𝑡
(𝑣𝑛, 𝑖 − 𝑣 𝑖) = −∇𝑖𝜙 + 𝒪(Δ𝑡), (S130)

where the surface-tension increment is defined as

𝜙 ≡ 𝜎∗ − 𝜎𝑛−1/2. (S131)

By taking the covariant derivative of Eq. (S130) and neglecting 𝒪(Δ𝑡), we obtain

∇𝑖∇𝑖𝜙 =
𝜌

Δ𝑡
∇𝑖𝑣 𝑖 (S132)

where, unlike 𝑣𝑛 , the covariant divergence of 𝑣 is not equal to zero. Equation (S132) is a
Poisson-like equation [16] for 𝜙, for which we will now work out the BCs.
First, by multiplying Eq. (S130) by 𝑛𝑖 , using Eqs. (S118), (S119), (S126) and (S127), and neglecting
𝒪(Δ𝑡), we obtain the Neumann BCs

𝑛 𝑖∇𝑖𝜙 = 0 on 𝜕Ω . (S133)

Second, Eqs. (S121), (S124) and (S131) imply

𝜙 = 0 on 𝜕Ω . (S134)

Equations (S132) to (S134) constitute a Poisson-like BVP which determines the pressure
difference 𝜙. Once 𝜙 is known, the surface tension 𝜎𝑛−1/2 is obtained by means of Eq. (S131).

(c) Velocity. Given that 𝑣 and 𝜙 are known from Cases 1a and 1b, the velocity field is obtained,
neglecting 𝒪(Δ𝑡) terms, from Eq. (S130).

We will now discuss the variational formulation of the BVPs in Cases 1a to 1c [14].

(a) Approximated velocity.
We multiply Eq. (S125) by

√|𝑔| 𝜈𝑣 𝑖 , integrate, and obtain
〈
𝜌

[
𝑣 𝑖 − 𝑣𝑛−1, 𝑖

Δ𝑡
+

(
3
2𝑣

𝑛−1, 𝑗 − 1
2𝑣

𝑛−2, 𝑗
)
∇𝑗𝑉 𝑖

]
𝜈𝑣 𝑖

〉
Ω
+

+ 〈
𝜎∗∇𝑖𝜈𝑣 𝑖

〉
Ω − 〈

𝑛 𝑖𝜎∗𝜈𝑣 𝑖
〉
𝜕Ω +

+2𝜂
[〈
𝑑𝑖 𝑗(𝑉)∇𝑗𝜈𝑣 𝑖

〉
Ω − 〈

𝑛 𝑗𝑑𝑖 𝑗(𝑉)𝜈𝑣 𝑖
〉
𝜕Ω

]
= 0,

(S135)
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where we used Eqs. (S24), (S59) and (S63), and we wrote explicitly the velocity dependence of
the rate-of-deformation tensor (S22).
By using Eqs. (S23) and (S121), we enforce the BC (S128) as a natural BC in Eq. (S135), and
obtain

〈
𝜌

[
𝑣 𝑖 − 𝑣𝑛−1, 𝑖

Δ𝑡
+

(
3
2𝑣

𝑛−1, 𝑗 − 1
2𝑣

𝑛−2, 𝑗
)
∇𝑗𝑉 𝑖

]
𝜈𝑣 𝑖

〉
Ω
+

+ 〈
𝜎∗∇𝑖𝜈𝑣 𝑖 + 2𝜂 𝑑𝑖 𝑗(𝑉)∇𝑗𝜈𝑣 𝑖

〉
Ω −

− 〈
𝑛 𝑖𝜎∗𝜈𝑣 𝑖

〉
𝜕Ω − 2𝜂 ⟨𝑛 𝑗𝑑𝑖 𝑗(𝑉)𝜈𝑣 𝑖⟩𝜕Ω ∪𝜕Ω = 0,

(S136)

which is solved for 𝑣 with the Dirichlet BCs (S126) and (S127).
(b) Pressure correction.

Proceeding along the same lines for Eq. (S132), we obtain

〈(∇𝑖𝜙)∇𝑖𝜈𝜙〉Ω + 𝜌

Δ𝑡

〈
(∇𝑖𝑣 𝑖)𝜈𝜙

〉
Ω
− 〈

𝑛 𝑖(∇𝑖𝜙)𝜈𝜙
〉
𝜕Ω = 0, (S137)

where 𝜈𝜙 is the test function related to 𝜙, and we used Eq. (S18).
We enforce Eq. (S133) as a natural BC in Eq. (S137), and obtain the VP

〈(∇𝑖𝜙)∇𝑖𝜈𝜙〉Ω + 𝜌

Δ𝑡

〈
(∇𝑖𝑣 𝑖)𝜈𝜙

〉
Ω
− ⟨𝑛 𝑖(∇𝑖𝜙)𝜈𝜙⟩𝜕Ω = 0, (S138)

which we solve for 𝜙 with the Dirichlet BC (S134).
(c) Velocity.

Proceeding along the same lines for Eq. (S130) and neglecting 𝒪(Δ𝑡), we obtain〈[ 𝜌

Δ𝑡
(𝑣𝑛, 𝑖 − 𝑣 𝑖) + ∇𝑖𝜙

]
𝜈𝑣 𝑖

〉
Ω
= 0, (S139)

which is solved for 𝑣.

We iterate in time by solving for 𝑣, 𝜙 and 𝑣𝑛 with Cases 1a to 1c at each time step 𝑡𝑛 , obtaining
the surface tension 𝜎𝑛−1/2 from Eq. (S131), and then setting, at the next time step, 𝑣𝑛 → 𝑣𝑛−1,
𝑣𝑛−1 → 𝑣𝑛−2 and 𝜎𝑛−1/2 → 𝜎𝑛−3/2.
This dynamics is solved in thechannel_with_cylinder_curved_crank_nicholson_discretization
module aschannel_with_cylinder_curved_crank_nicholson_discretization_square_no_circle,
see Fig. S5.

2. Rectangle-with-circle geometry.
For the geometry of Case 3 in Section S1.8, we consider, at any given 𝑡, the BCs

Eqs. (S108) to (S111),
𝑣 𝑖 = 0 on 𝜕Ω , , (S140)

and the BCs relative to the time variable, Eqs. (S112) and (S113).
In what follows, we will sketch the result for the VPs, which can be derived along the lines of Case 1.
At each time step we obtain the VPs

(a) Approximated velocity.
We solve
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〈
𝜌

[
𝑣 𝑖 − 𝑣𝑛−1, 𝑖

Δ𝑡
+

(
3
2𝑣

𝑛−1, 𝑗 − 1
2𝑣

𝑛−2, 𝑗
)
∇𝑗𝑉 𝑖

]
𝜈𝑣 𝑖

〉
Ω
+

+ 〈
𝜎∗∇𝑖𝜈𝑣 𝑖 + 2𝜂 𝑑𝑖 𝑗(𝑉)∇𝑗𝜈𝑣 𝑖

〉
Ω −

− 〈
𝑛 𝑖𝜎∗𝜈𝑣 𝑖

〉
𝜕Ω − 2𝜂 ⟨𝑛 𝑗𝑑𝑖 𝑗(𝑉)𝜈𝑣 𝑖⟩𝜕Ω ∪𝜕Ω = 0,

(S141)

in which we enforced Eq. (S128), which we combined with Eqs. (S23), (S121) and (S124), as a
natural BC. We solve Eq. (S141) for 𝑣 with Dirichlet BCs (S108), (S109), (S111) and (S140).

(b) Pressure correction.
We obtain the VP (S138), in which we enforced (S133) and

𝑛 𝑖∇𝑖𝜙 = 0 on 𝜕Ω . (S142)

as natural BCs, and which we solve for 𝜙 with BC (S134).
(c) Velocity.

We solve the VP (S139) for 𝑣.

This dynamics is solved in thechannel_with_cylinder_curved_crank_nicholson_discretization
module aschannel_with_cylinder_curved_crank_nicholson_discretization_square, see Fig. S6.

S3.2.2 Moving manifold

In this Section we will consider the solution of Eqs. (9) to (12), combined with the definitions (14) and (15).
We consider the geometry of Case 3 in Section S1.8, and, for any time 𝑡, the BCs

Eqs. (S46), (S47), (S86), (S101), (S102) and (S108),
𝜎 =0 on 𝜕Ω , (S143)

𝑛 𝑖𝑣𝑖 =0 on 𝜕Ω , (S144)
𝑤 =0 on 𝜕Ω , (S145)

𝑛 𝑖∇𝑖𝑧 =𝜓 on 𝜕Ω, (S146)

where Eqs. (S46), (S47) and (S146) correspond to the fixed-height BCs of Case 1 in Section S3.1.1.
The BCs relative to the temporal variable are, for all x ∈ Ω,

Eqs. (S112) and (S113),
𝑤(x, 𝑡 = 0) =𝑤0(x), (S147)
𝑧(x, 𝑡 = 0) =𝑧0(x). (S148)

Proceeding along the lines of Section S3.2.1, we introduce the definitions (S114), (S115), (S124)
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Figure S5: Dynamics of laminar air flow on a macroscopic, curved channel, with boundary conditions (S108)
to (S111). The solution has been obtained with, 𝑣1 = 6 × 10−2 𝑦(𝑦 − ℎ)/ℎ2 m/s, 𝑣2 = 0, and the dynamics has been
solved for a total time 𝑇 ∼ 34 min, with 𝑁s = 2048 time steps. Dimensions of the rectangular channel are 𝐿 = 20 m,
ℎ = 0.41 m [21]. Model parameters are given by (25). The inflow velocity profile 𝑣 is given by the Poiseuille-flow
solution on a flat manifold [10]. The rectangle height, ℎ, has been taken from the FEAT2D DFG 2D-3 benchmark for
a flow around a cylinder [21]. We chose the rectangle length 𝐿 to be large enough, in such a way that the outflow
velocity profile, at 𝑥 = 𝐿, is not affected by the inflow profile, and coincides with the free-flow profile at steady state.
A) Manifold profile, 𝑧. B) Component along the 𝑥 axis of the velocity 𝑣 at the right boundary of the rectangular
channel, 𝑥 = 𝐿, as a function of 𝑦. Solution from i r e ne (black dots), exact solution (red curve) and Poiseuille-flow
solution on a flat manifold (green curve). C) Surface tension (left) and velocity (right) profiles at an early time. The
direction of the velocity field is represented by the arrows, and the modulus by the arrow color. D) Same as C, at a
later time, at which the solution reached steady state.
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Figure S6: Dynamics of turbulent air flow on a macroscopic, curved channel with an obstacle (red cylinder), with
boundary conditions (S108) to (S111) and (S140). The solution has been obtained with the same 𝑣 𝑖 as in Fig. S5, and
the dynamics has been solved for a total time 𝑇 ∼ 17 min, with 𝑁s = 2048 time steps. Model parameters are given by
(25), 𝐿 = 2.2 m, ℎ = 0.41 m, and the obstacle radius is 𝑟 = 0.05 m. The dimensions of the rectangle and of the obstacle
have been taken from the FEAT2D DFG 2D-3 benchmark for a flow around a cylinder [21]. Panels A, B and C follow
the same notation, respectively, as panels A, C and D of Fig. S5.
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and (S131), and we discretize time along the lines of Eqs. (S116) and (S117):

∇𝑛−1/2
𝑖 𝑣𝑛, 𝑖 − 2𝜇𝑛−1/2𝑤𝑛 =0, (S149)

𝜌
( 𝑣𝑛, 𝑖 − 𝑣𝑛−1, 𝑖

Δ𝑡
+ 3

2𝑣
𝑛−1, 𝑗∇𝑛−1/2

𝑗 𝑣𝑛−1, 𝑖 − 1
2𝑣

𝑛−2, 𝑗∇𝑛−1/2
𝑗 𝑣𝑛−2, 𝑖−

−2𝑣𝑛−1, 𝑗𝑤𝑛−1𝑏𝑛−1/2, 𝑖
𝑗 − 𝑤𝑛−1∇𝑛−1/2, 𝑖𝑤𝑛−1

)
=

= ∇𝑛−1/2, 𝑖𝜎𝑛−1/2 + 𝑓𝜂
𝑖
(
𝑣𝑛 + 𝑣𝑛−1

2 ,
𝑤𝑛 + 𝑤𝑛−1

2 , 𝜔𝑛−1/2 , 𝜇𝑛−1/2
)
, (S150)

𝜌
(𝑤𝑛 − 𝑤𝑛−1

Δ𝑡
+ 𝑣𝑛−1, 𝑖𝑣𝑛−1, 𝑗𝑏𝑛−1/2

𝑗𝑖 + 3
2𝑣

𝑛−1, 𝑖∇𝑛−1/2
𝑖 𝑤𝑛−1 − 1

2𝑣
𝑛−2, 𝑖∇𝑛−1/2

𝑖 𝑤𝑛−2
)
=

𝑓𝜅(𝜔𝑛−1/2 , 𝜇𝑛−1/2) + 2𝜎𝑛−1/2𝜇𝑛−1/2 + f𝜂
(
𝑣𝑛 + 𝑣𝑛−1

2 ,
𝑤𝑛 + 𝑤𝑛−1

2 , 𝜔𝑛−1/2 , 𝜇𝑛−1/2
)
, (S151)

𝑧𝑛−1/2 − 𝑧𝑛−3/2

Δ𝑡
=

= 𝑤𝑛−1
(
�̂�𝑛−1/2, 3 − �̂�𝑛−1/2, 𝑖𝜔𝑛−1/2

𝑖

)
, (S152)

Eqs. (14) and (15).

The discrete version of the BCs (S46), (S47), (S86), (S101), (S102), (S108) and (S143) to (S146) is

𝑣𝑛, 𝑖 =𝑣 𝑖 on 𝜕Ω , (S153)

𝑛𝑛−1/2, 𝑖Π𝑛−1/2, 1
𝑖

(
𝑣𝑛 + 𝑣𝑛−1

2 ,
𝑤𝑛 + 𝑤𝑛−1

2 , 𝜎𝑛−1/2
)
=0 on 𝜕Ω (S154)

𝑤𝑛 =0 on 𝜕Ω, (S155)

𝑛𝑛−1/2
𝑖 𝑣𝑛, 𝑖 =0 on 𝜕Ω ∪ 𝜕Ω , (S156)

𝜎𝑛−1/2 =0 on 𝜕Ω , (S157)

𝑧𝑛−1/2 =𝑧 on 𝜕Ω , (S158)

𝑧𝑛−1/2 =𝑧 on 𝜕Ω , (S159)

𝑛𝑛−1/2, 𝑖∇𝑛−1/2
𝑖 𝑧 =𝜓 on 𝜕Ω, (S160)

and the discrete version of the time BCs (S112), (S113), (S147) and (S148) is

𝑣0, 𝑖 =𝑣 𝑖0(x), (S161)
𝑤0 =𝑤0(x), (S162)

𝜎−1/2 =𝜎0(x), (S163)
𝑧0 =𝑧0(x). (S164)

In Eqs. (S149) to (S152), we wrote explicitly the dependence of the forces (S24), (S26) and (S27) on the
velocity fields, 𝜔 and 𝜇, and we denote by

∇𝑛−1/2 (S165)
the covariant derivative obtained with 𝑧 = 𝑧𝑛−1/2, and similarly for all other quantities, such as 𝑏𝑛−1/2.
Importantly, in Eqs. (S149) to (S151) we chose a time discretization scheme where velocities are evaluated
at integer time steps, and the surface tension and the manifold shape at semi-integer time steps [14]. This
scheme proved to be stable in all the application which we considered, including those with a turbulent
behavior—see for example Fig. 5.

We will now discuss the splitting scheme, proceeding along the derivation of Section S3.2.1. We
introduce approximated tangential and normal velocities, 𝑣 and 𝑤, respectively, and set Eq. (S129) and

𝑊 ≡ 𝑤 + 𝑤𝑛−1

2 . (S166)
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In what follows, we will extend the IPCS splitting scheme [20] discussed in Section S3.2.1 to solve
Eqs. (S149) to (S152), by including one additional step to solve for the manifold shape:

1. Approximated velocities.
Let us consider an approximated tangential and normal velocity, 𝑣 and𝑤, which satisfy the following
BVPs:

𝜌
[ 𝑣 𝑖 − 𝑣𝑛−1, 𝑖

Δ𝑡
+

(3
2𝑣

𝑛−1, 𝑗 − 1
2𝑣

𝑛−2, 𝑗
)
∇𝑛−1/2
𝑗 𝑉 𝑖 − 2𝑉 𝑗𝑊𝑏𝑛−1/2, 𝑖

𝑗 −𝑊∇𝑛−1/2, 𝑖𝑊
]
=

= ∇𝑖𝜎∗𝑛−1/2 + 𝑓𝜂
𝑖
(
𝑉,𝑊, 𝜔𝑛−1/2 , 𝜇𝑛−1/2

)
, (S167)

𝜌
[𝑤 − 𝑤𝑛−1

Δ𝑡
+𝑉 𝑖𝑉 𝑗𝑏𝑛−1/2

𝑗𝑖 +
(3
2𝑣

𝑛−1, 𝑖 − 1
2𝑣

𝑛−2, 𝑖
)
∇𝑛−1/2
𝑖 𝑊

]
=

𝑓𝜅(𝜔𝑛−1/2 , 𝜇𝑛−1/2) + 2𝜎∗𝜇𝑛−1/2 + f𝜂
(
𝑉,𝑊, 𝜔𝑛−1/2 , 𝜇𝑛−1/2

)
(S168)

with BCs

𝑣 𝑖 =𝑣 𝑖 on 𝜕Ω , (S169)

𝑛𝑛−1/2, 𝑖Π𝑛−1/2, 1
𝑖 (𝑉,𝑊, 𝜎∗) =0 on 𝜕Ω , (S170)

𝑤 =0 on 𝜕Ω, (S171)

𝑛𝑛−1/2
𝑖 𝑣 𝑖 =0 on 𝜕Ω ∪ 𝜕Ω . (S172)

Here, we obtained Eqs. (S167) and (S168) from Eqs. (S150) and (S151) by replacing the velocity fields
with the approximated ones or with 𝑉 and𝑊 , and similarly for Eqs. (S169) to (S172) and Eqs. (S153)
to (S160).

2. Pressure correction.
Subtracting Eqs. (S150) and (S167) we obtain

𝜌
𝑣𝑛, 𝑖 − 𝑣 𝑖

Δ𝑡
= −∇𝑛−1/2, 𝑖𝜙 + 𝒪(Δ𝑡). (S173)

Taking the covariant derivative of Eq. (S173) and neglecting 𝒪(Δ𝑡), we obtain

∇𝑛−1/2
𝑖 ∇𝑛−1/2, 𝑖𝜙 = − 𝜌

Δ𝑡

(
∇𝑛−1/2
𝑖 𝑣𝑛, 𝑖 − ∇𝑛−1/2

𝑖 𝑣 𝑖
)

= − 𝜌

Δ𝑡

(
2𝜇𝑛−1/2𝑤𝑛 − ∇𝑛−1/2

𝑖 𝑣 𝑖
)
,

(S174)

where in the second line we used Eq. (S149).
We will now work out the BCs for Eq. (S174). First, Eqs. (S131) and (S157) imply the Dirichlet BC
(S134). Second, by combining Eq. (S173) with Eqs. (S153), (S156), (S169) and (S172) we obtain the
Neumann BC

𝑛𝑛−1/2, 𝑖∇𝑛−1/2
𝑖 𝜙 = 0 on 𝜕Ω ∪ 𝜕Ω . (S175)

Overall, Eqs. (S134), (S174) and (S175) constitute a Poisson-like BVP which determines 𝜙.

3. Velocities.
Subtracting Eqs. (S151) and (S168) we obtain

𝜌

Δ𝑡
(𝑤𝑛 − 𝑤) = 𝒪(Δ𝑡), (S176)

which implies
𝑤𝑛 = 𝑤 + 𝒪(Δ𝑡2) (S177)
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Neglecting 𝒪(Δ𝑡) in Eqs. (S173) and (S177), we obtain the relations

𝜌
𝑣𝑛, 𝑖 − 𝑣 𝑖

Δ𝑡
= − ∇𝑛−1/2, 𝑖𝜙, (S178)

𝑤𝑛 =𝑤, (S179)

which determine 𝑣𝑛 and 𝑤𝑛 , respectively, in terms of 𝑣 and 𝑤.

4. Manifold. From Eqs. (14) and (15) we obtain

𝜔𝑛−1/2
𝑖 =∇𝑛−1/2

𝑖 𝑧𝑛−1/2 , (S180)

𝜇𝑛−1/2 =𝐻(𝜔𝑛−1/2). (S181)

We solve Eqs. (S152), (S180) and (S181) with BCs (S158) to (S160), for 𝑧𝑛−1/2, 𝜔𝑛−1/2 and 𝜇𝑛−1/2.

We will now discuss the variational formulation of the BVPs in Cases 1 to 4, proceeding along the
lines of Section S3.2.1. We will first present the VPs, and then specify their BCs.

1. Approximated velocities.

We multiply Eq. (S167) by
√
|𝑔𝑛−1/2|𝜈𝑣 𝑖 integrate, and obtain

〈
𝜌
[ 𝑣 𝑖 − 𝑣𝑛−1, 𝑖

Δ𝑡
+

(3
2𝑣

𝑛−1, 𝑗 − 1
2𝑣

𝑛−2, 𝑗
)
∇𝑛−1/2
𝑗 𝑉 𝑖 − 2𝑉 𝑗𝑊𝑏𝑛−1/2, 𝑖

𝑗

]
𝜈𝑣 𝑖

〉𝑛−1/2

Ω
−

−𝜌

2

[
−

〈
𝑊2∇𝑛−1/2

𝑖 𝜈𝑣
𝑖
〉𝑛−1/2

Ω
+

〈
𝑊2𝑛𝑛−1/2

𝑖 𝜈𝑣
𝑖
〉𝑛−1/2

𝜕Ω

]
+

〈
𝜎∗ ∇𝑛−1/2

𝑖 𝜈𝑣
𝑖
〉𝑛−1/2

Ω
−

〈
𝜎∗𝑛𝑛−1/2

𝑖 𝜈𝑣
𝑖
〉𝑛−1/2

𝜕Ω
−

−2𝜂
[
−

〈
𝑑𝑖 𝑗(𝑉,𝑊, 𝜔𝑛−1/2)∇𝑛−1/2

𝑖 𝜈𝑣 𝑗

〉𝑛−1/2

Ω
+

〈
𝑛𝑛−1/2
𝑖 𝑑𝑖 𝑗(𝑉,𝑊, 𝜔𝑛−1/2)𝜈𝑣 𝑗

〉𝑛−1/2

𝜕Ω ∪𝜕Ω
+

+
〈
𝑛𝑛−1/2
𝑖 𝑑𝑖2(𝑉,𝑊, 𝜔𝑛−1/2)𝜈𝑣2

〉𝑛−1/2

𝜕Ω

]
= 0,

(S182)

where we used Eqs. (S18) and (S19), and we have set

⟨·⟩𝑛−1/2
Ω ≡

∫
Ω

d𝑥1d𝑥2
√
|𝑔𝑛−1/2| ·, (S183)

⟨·⟩𝑛−1/2
𝜕Ω ≡

∫
𝜕Ω

d𝑠
√
|ℎ𝑛−1/2| ·, (S184)

and here and in what follows indices are raised an lowered with the metric 𝑔𝑛−1/2. In the last line of
Eq. (S182), we imposed Eq. (S170) as a natural BC by using Eqs. (S23), (S124) and (S157).

Proceeding along the same lines, we multiply Eq. (S168) by
√
|𝑔𝑛−1/2|𝜈𝑤 integrate, and obtain
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〈
𝜌

(
𝑤𝑛 − 𝑤

Δ𝑡
+𝑉 𝑖𝑉 𝑗𝑏𝑛−1/2

𝑖 𝑗

)
𝜈𝑤

〉𝑛−1/2

Ω
+

𝜌

{
−

〈
𝑊∇𝑛−1/2

𝑖

[(
3
2𝑣

𝑛−1, 𝑖 − 1
2𝑣

𝑛−2, 𝑖
)
𝜈𝑤

]〉𝑛−1/2

Ω
+

〈
𝑛𝑛−1/2
𝑖 𝑊

(
3
2𝑣

𝑛−1, 𝑖 − 1
2𝑣

𝑛−2, 𝑖
)
𝜈𝑤

〉𝑛−1/2

𝜕Ω

}
+

+2𝜅
{ 〈

−
(
∇𝑛−1/2, 𝑖𝜇𝑛−1/2

)
∇𝑛−1/2
𝑖 𝜈𝑤 + 2𝜇𝑛−1/2 [(𝜇𝑛−1/2)2 − 𝐾𝑛−1/2] 𝜈𝑤〉𝑛−1/2

Ω
+

+
〈
𝑛𝑛−1/2
𝑖

(
∇𝑛−1/2, 𝑖𝜇𝑛−1/2

)
𝜈𝑤

〉𝑛−1/2

𝜕Ω

}
−

−2
〈[
𝜎∗𝜇𝑛−1/2 + f𝜂(𝑉,𝑊, 𝜔𝑛−1/2)] 𝜈𝑤〉𝑛−1/2

Ω
= 0,

(S185)

where we used Eqs. (S18) and (S19).

2. Pressure correction.
From Eqs. (S18) and (S174), we obtain

〈
(∇𝑛−1/2, 𝑖𝜙)∇𝑛−1/2

𝑖 𝜈𝜙
〉𝑛−1/2

Ω
+ 𝜌

Δ𝑡

〈(
∇𝑛−1/2
𝑖 𝑣 𝑖 − 2𝜇𝑛−1/2𝑤

)
𝜈𝜙

〉𝑛−1/2

Ω
−

−
〈
𝑛𝑛−1/2, 𝑖

(
∇𝑛−1/2
𝑖 𝜙

)
𝜈𝜙

〉𝑛−1/2

𝜕Ω
=0,

(S186)

where we imposed Eq. (S175) as a natural BC.

3. Velocities.
Neglecting 𝒪(Δ𝑡), Eqs. (S178) and (S179) imply

〈[ 𝜌

Δ𝑡
(𝑣𝑛, 𝑖 − 𝑣 𝑖) + ∇𝑛−1/2, 𝑖𝜙

]
𝜈𝑣𝑛 𝑖

〉𝑛−1/2

Ω
=0, (S187)

⟨(𝑤𝑛 − 𝑤) 𝜈𝑤𝑛 ⟩𝑛−1/2
Ω =0. (S188)

4. Manifold.
Equations (S152), (S180) and (S181) imply〈

𝜔𝑛−1/2
𝑖 𝜈𝑧𝑛−1/2

𝑖 +
(
∇𝑛−1/2
𝑖 𝜈𝜔𝑛−1/2

𝑖
)
𝑧𝑛−1/2

〉𝑛−1/2

Ω
−

〈
𝑧𝑛−1/2𝑛𝑛−1/2

𝑖 𝜈𝜔𝑛−1/2
𝑖
〉𝑛−1/2

𝜕Ω
=0, (S189)〈[

𝜇𝑛−1/2 − 𝐻(𝜔𝑛−1/2)] 𝜈𝜇𝑛−1/2

〉𝑛−1/2

Ω
=0, (S190)〈[

𝑧𝑛−1/2 − 𝑧𝑛−3/2

Δ𝑡
− 𝑤𝑛−1

(
�̂�𝑛−1/2, 3 − �̂�𝑛−1/2, 𝑖𝜔𝑛−1/2

𝑖

)]
𝜈𝑧𝑛−1/2

〉𝑛−1/2

Ω
=0. (S191)

Unlike the case of a fixed ℳ, Section S3.2.1, here the steps of the splitting scheme cannot be solved
separately, because they are coupled through the manifold shape. As a result, the VPs (S182) and (S185)
to (S191) will be solved as a mixed VP [15, 14] for the unknowns 𝑣, 𝑤 𝑣𝑛 , 𝑤𝑛 , 𝜙, 𝑧𝑛−1/2, 𝜔𝑛−1/2 and 𝜇𝑛−1/2.

In addition to the natural BCs (S170) and (S175), we impose Eqs. (S134), (S158) to (S160), (S169)
and (S171) as Dirichlet BCs. Finally, we enforce Eq. (S172) and the relation between 𝜇𝑛−1/2 and 𝐻 on 𝜕Ω,
i.e.,

𝜇𝑛−1/2 = 𝐻(𝜔𝑛−1/2) on 𝜕Ω. (S192)
with the penalty method, by adding the functional

𝐺𝜇 ≡ 𝛼
𝑙

〈
[𝜇𝑛−1/2 − 𝐻(𝜔𝑛−1/2)]𝜈𝜇𝑛−1/2

〉
𝜕Ω
, (S193)
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cf. Eq. (S33).
Finally, we iterate in time by updating the fields along the lines of Section S3.2.1. This dynamics is

solved in the dynamicsmodule as variational_problem_bc_square_a, see Fig. 5.

S3.3 Exact solutions
S3.3.1 Radially symmetric steady state with no flows

In this Section, we will show how to obtain a numerically exact solution for the steady state in the absence
of flows in the radially symmetric case discusses in Section 3.1.1.

We will use the radial coordinates 𝑟, 𝜃 discussed in Section S1.7, for which the quantities in Section S1
read

X = (𝑟 cos𝜃, 𝑟 sin𝜃, 𝑧(𝑟)) , (S194)
e1 = (cos𝜃, sin𝜃, 𝜕𝑟𝑧) , (S195)
e2 = (−𝑟 sin𝜃, 𝑟 cos𝜃, 0) , (S196)

𝑔𝑖 𝑗 =

(
1 + 𝜔2

𝑟 0
0 𝑟2

)
, (S197)

𝑔 𝑖 𝑗 =
1
|𝑔|

(
𝑟2 0
0 1 + 𝜔2

𝑟

)
, (S198)

|𝑔| =𝑟2(1 + 𝜔2
𝑟 ), (S199)

𝑏𝑖 𝑗 =
𝑟√|𝑔|

(
𝜕𝑟𝜔𝑟 0

0 𝑟𝜔𝑟

)
, (S200)

where
𝜔𝑟 = 𝜕𝑟𝑧. (S201)

We will now work out the terms in the force-balance equation (13). First, by using Eqs. (S10), (S197)
and (S199), we obtain

∇LB𝐻 =
1√|𝑔|

𝜕𝑟

(
𝑟2𝜕𝑟𝐻√|𝑔|

)
. (S202)

Second, by using Eqs. (S6), (S7), (S199) and (S200) we obtain the following expressions for the mean and
Gaussian curvature:

𝐻(𝑟) = 1
2|𝑔|3/2

(
𝜔𝑟 |𝑔| + 𝑟3𝜕𝑟𝜔𝑟

)
, (S203)

𝐾(𝑟) = − 1
2𝑟 𝜕𝑟

(
𝑟2

|𝑔|
)
. (S204)

Combining Eqs. (13) and (S202) to (S204), we obtain a fourth-order ordinary differential equation (ODE)
for 𝑧 which can be solved in a numerically exact way, see check_with_analytical_solution_bc_ring.
The solution is shown in panels C to E of Fig. S1.

S3.3.2 Radially symmetric steady state with flows

In this Section, we will show how to obtain a numerically exact solution for the steady state with flows in
the radially symmetric case discusses in Section 3.1.2.

Given Eqs. (S194) to (S204), which still hold in the presence of flows, in what follows we will discuss
the geometrical in quantities which involve the velocity field. First, we observe that radial symmetry
implies that

𝑣𝜃 = 0. (S205)
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The only non-vanishing Christoffel symbols (S9) are [1]

Γ𝑟𝑟𝑟 =
𝜔𝑟𝜕𝑟𝜔𝑟

|𝑔| , (S206)

Γ𝑟𝜃𝜃 = − 𝑟
|𝑔| , (S207)

Γ𝜃𝑟𝜃 = Γ𝜃𝜃𝑟 =
1
𝑟
. (S208)

The only non-vanishing components of ∇𝑖𝑣 𝑗 are

∇𝑟𝑣𝑟 = ∇𝑟𝑣𝑟 =𝜕𝑟𝑣𝑟 + 𝑣𝑟Γ𝑟𝑟𝑟 , (S209)
∇𝜃𝑣𝜃 = ∇𝜃𝑣𝜃 =𝑣𝑟Γ𝜃𝜃𝑟 , (S210)

where we used Eqs. (S8) and (S205).
We will now work out the terms in Eqs. (18) to (20). First, Eq. (18) can be rewritten as

∇𝑖𝑣 𝑖 =𝜕𝑟𝑣𝑟 + 𝑣𝑟
(
Γ𝑟𝑟𝑟 + Γ𝜃𝑟𝜃

)
=𝜕𝑟𝑣𝑟 + 𝑣𝑟

(
𝜔𝑟𝜕𝑟𝜔𝑟

1 + 𝜔2
𝑟
+ 1
𝑟

)

=𝜕𝑟𝑣𝑟 + 𝑣𝑟
[
1
2𝜕𝑟 log(1 + 𝜔2

𝑟 ) +
1
𝑟

]
,

(S211)

where we used Eqs. (S8), (S206) and (S208). We rewrite Eq. (S211) as

𝜕𝑟

[
log(𝑟𝑣𝑟) + 1

2 log
(
1 + 𝜔2

𝑟
) ]

= 0, (S212)

and by integrating we obtain

𝑣𝑟 =
𝐶

𝑟
√

1 + 𝜔2
𝑟

, (S213)

where 𝐶 is an integration constant. Physically, Eq. (S213) constitutes the relation between the radial fluid
velocity and manifold shape which needs to hold for the fluid mass to be conserved according to Eq. (18).

In order simplify the other equations we observe that, given that we are at steady state, we must have

𝑤 = 0 (S214)

everywhere. The viscous term in the right-hand side (RHS) of Eq. (19) thus reads

−∇LB𝑣 𝑖 − 2
(
𝑏 𝑖 𝑗 − 2𝜇 𝑔 𝑖 𝑗∇𝑗𝑤

) + 2𝐾𝑣 𝑖 =∇ 𝑗∇𝑗𝑣 𝑖 + ∇ 𝑗∇𝑖𝑣 𝑗
=2

[
𝜕𝑟∇𝑟𝑣𝑟 + (∇𝑟𝑣𝑟)Γ𝜃𝜃𝑟 − (∇𝜃𝑣𝜃)Γ𝜃𝜃𝑟

] (S215)

where we used Eqs. (S8), (S22), (S25) and (S214). The first term in the LHS of Eq. (20) can be rewritten as

𝑣 𝑖𝑣 𝑗𝑏 𝑗𝑖 = (𝑣𝑟)2𝑏𝑟𝑟 , (S216)

where we used Eq. (S200). Finally, we rewrite the viscous term in the RHS of Eq. (20) as

(∇𝑖𝑣 𝑗)𝑏𝑖 𝑗 = 𝑔𝑟𝑟(∇𝑟𝑣𝑟)𝑏𝑟𝑟 + 𝑔𝜃𝜃(∇𝜃𝑣𝜃)𝑏𝜃𝜃 , (S217)

where we used Eq. (S200).
Combining Eqs. (19), (20) and (S214) to (S217), we obtain the following system of ODEs:

𝜌𝑣𝑟∇𝑟𝑣𝑟 − 𝑔𝑟𝑟𝜕𝑟𝜎 − 2𝜂𝑔𝑟𝑟
[
𝜕𝑟∇𝑟𝑣𝑟 + (∇𝑟𝑣𝑟)Γ𝜃𝜃𝑟 − (∇𝜃𝑣𝜃)Γ𝜃𝜃𝑟

]
=0, (S218)

𝜌(𝑣𝑟)2𝑏𝑟𝑟 + 2𝜅

[
1√|𝑔|

𝜕𝑟

(
𝑟2𝜕𝑟𝐻√|𝑔|

)
+ 2𝐻(𝐻2 − 𝐾)

]
− 2𝜎𝐻−

2𝜂
[
𝑔𝑟𝑟(∇𝑟𝑣𝑟)𝑏𝑟𝑟 + 𝑔𝜃𝜃(∇𝜃𝑣𝜃)𝑏𝜃𝜃

]
=0. (S219)
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Since the radial velocity 𝑣𝑟 depends on 𝑧 through Eq. (S213), Eqs. (S217) and (S218) constitute a system of
ODEs for the unknowns 𝜎 and 𝑧. The explicit expressions for the quantities which enter in Eqs. (S217)
and (S218) can be obtained by means of Eqs. (S206) to (S210).

This ODE system is solved in a numerically exact way incheck_with_analytical_solution_bc_ring_1
and check_with_analytical_solution_bc_ring_2; the solution is shown in panels E to I of Figs. S2
and S3.

S3.3.3 Channel flow on a fixed manifold

In what follows, we will solve the steady state of Eqs. (23) and (24), which describe the channel flow on a
fixed manifold, for a problem invariant with respect to translations along the 𝑥1 axis. The result will be an
exact solution obtained by quadratures.

The surface parametrization (S1), tangent vectors (S2), metric tensor (S4) read

X(𝑥1 , 𝑥2) =(𝑥1 , 𝑥2 , 𝑧(𝑥2)), (S220)
e1 =(1, 0, 0), (S221)
e2 =(0, 1, 𝜔2), (S222)

𝑔𝑖 𝑗 =

(
1 0
0 1 + 𝜔2

2

)
, (S223)

𝑔 𝑖 𝑗 =

(
1 0
0 1/|𝑔|

)
, (S224)

|𝑔| =1 + 𝜔2
2 , (S225)

At steady state, symmetry implies [10]

𝑣2 =0, (S226)
𝜕1𝑣1 =0, (S227)

(S228)

Let us work out the quantities which enter in (23) and (24). By using Eqs. (S8), (S9), (S223), (S226)
and (S227) we have

∇1𝑣1 = ∇2𝑣2 =0, (S229)
𝑣 𝑖∇𝑖𝑣1 =0. (S230)

The Laplace-Beltrami ds operator applied to the velocity reads

∇LB𝑣1 = −
√
|𝑔|𝑔11𝑔22𝜖21𝜕2

[√
|𝑔|𝑔22𝑔11𝜖21𝜕2

(
𝑔11𝑣1) ]

= − 1√|𝑔|
𝜕2

(
𝑣2√|𝑔|

)
,

∇LB𝑣2 = −
√
|𝑔|𝑔22𝑔11𝜖12𝜕1

[√
|𝑔|𝑔𝑚𝑛 𝑔𝑜𝑝𝜖𝑚𝑜𝜕𝑛

(
𝑔𝑝𝑞𝑣𝑞

) ]
= 0,

(S231)

where we used Eqs. (S11), (S220), (S223) and (S226) to (S227). The covariant derivatives of the surface
tension read

∇1𝜎 =𝜕1𝜎, (S232)

∇2𝜎 =
1√|𝑔|

𝜕2𝜎, (S233)

where we used Eqs. (S8) and (S224).
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Equation (S229) implies that the continuity equation (23) is identically satisfied. On the other hand,
from Eqs. (S231) to (S233), we obtain the two components of the NS equations (24):

𝜕1𝜎 + 𝜂
1√|𝑔|

𝜕2

(
𝜕2𝑣√|𝑔|

)
=0, (S234)

𝜕2𝜎 =0. (S235)

Equation (S235) implies that 𝜎 depends on 𝑥1 only: By substituting this result in Eq. (S234), we have

𝜕1𝜎 = 𝐶 = 𝜂
1√|𝑔|

𝜕2

(
𝜕2𝑣√|𝑔|

)
, (S236)

where 𝐶 is independent of x. We solve Eq. (S236) by quadrature by imposing the BC (S109), and obtain

𝑣1(𝑥2) = 𝐶
𝜂

∫ 𝑥2

0
d𝑣

√
|𝑔(𝑣)|

[∫ 𝑣

0
d𝑢

√
|𝑔(𝑢)| − 𝐶

]
, (S237)

where we wrote explicitly the spatial dependence of 𝑔 on the spatial coordinate. We observe that Eq. (S237)
is the analog of the solution for channel flow on a flat manifold [10], with the linear measure 𝑑𝑥2 replaced
by

√|𝑔|𝑑𝑥2.
The solution (S237) with model parameters (25) is depicted in Fig. S5.

Acronyms
BC boundary condition, 4–6, 8–11, 15–24, 28

BVP boundary-value problem, 5, 6, 10, 15, 16, 22, 23

CN Crank Nicolson, 15

FE finite element, 30

FEniCS finite element computational software, 29

IPCS incremental pressure correction scheme, 15, 22

LHS left-hand side, 8, 26

NS Navier-Stokes, 15, 28

ODE ordinary differential equation, 25–27

PDE partial differential equation, 5

RHS right-hand side, 26

TMP trans-membrane protein, 7, 12–14

VP variational problem, 3–6, 9–11, 17, 18, 23, 24

28



Glossary
𝐻 mean curvature [3]. 7, 28, 29

𝐾 Gaussian curvature [3]. 28

c center of the circular obstacle in a mesh. 28

x coordinates on ℳ. 28

𝜖𝑖 𝑗 Levi-Civita antisymmetric symbol [1]. 2, 28

𝜅 bending rigidity [22]. 28

𝜇 auxiliary variable which equals the mean curvature 𝐻, see Eq. (15). It is a scalar on ℳ. 4, 12, 28

∇ covariant derivative [1]. 28

∇LB Laplace-Beltrami operator [6]. 28

�̂� unit vector in the three-dimensional Euclidean space, normal to ℳ, see Fig. 1. 1, 4, 28

𝜔 gradient of 𝑧, it is a one-form on ℳ. 4, 28, 29, 30

𝜔𝑟 radial component of 𝜔 in polar coordinates. 12, 28

𝜎 surface tension [22], it is a scalar on ℳ. 12, 28

�̂� radial direction: �̂� 𝑖 = 𝑥 𝑖
|x| . 28

𝑏 second fundamental form [1]. 1, 28

𝑔 metric tensor [1]. 1, 3, 28

ℎ pull-back of the metric 𝑔 on a curve 𝛾 in ℳ [1, 7]. 2, 3, 4, 28

𝑛 unit vector in the tangent bundle of ℳ and normal to a curve in ℳ, see Fig. 1. 3, 5, 6, 8, 28

𝑟 radius of circular obstacle in a mesh. 28

𝑣 tangential velocity, it is a vector field the tangent bundle of ℳ. 12, 19, 28

𝑤 normal velocity, it is a scalar on ℳ. 28

𝑧 fluid shape profile, it is a scalar on ℳ. 4, 7, 12, 19, 28, 29

finite element computational software (FEniCS) finite element computational software [14], on which
i r e ne is built.. 28

𝐿 length of a rectangle which defines 𝜔. 19, 28

𝑙 mesh cell size: the smallest cell diameter, across all cells in the mesh. 4, 28

𝜂 two-dimensional viscosity [10]. 28

𝛾 a curve in ℳ. 2, 28, 29

ℳ differential manifold [1]. 1, 2, 3, 4, 6, 24, 28, 29

n vector normal to a curve 𝛾 in ℳ; this vector belongs to the tangent bundle of ℳ [1]. 2, 4, 28

Ω subset of R2 over which the coordinates of ℳ are defined [16]. 3, 28, 29, 30

𝜕Ω boundary of Ω, see Fig. 1 and Eq. (7). 3, 4, 28

𝜕Ω boundary of Ω located at the bottom edge of the rectangle. 2, 28

29



𝜕Ω circular boundary of Ω. 3, 28

𝜕Ω inner circular boundary of Ω. 5, 28, 30

𝜕Ω same as 𝜕Ω , for the outer circular boundary. 5, 28

𝜕Ω boundary of Ω located at the left edge of the rectangle. 28, 30

𝜕Ω 𝜕Ω ∪ 𝜕Ω . 28

𝜕Ω same as 𝜕Ω , for the right edge of the rectangle. 10, 28

𝜕Ω rectangular boundary of Ω, see Eq. (6). 28

𝜕Ω boundary of Ω located at the top edge of the rectangle. 28

𝜕Ω same as 𝜕Ω , for the top and bottom edges of the rectangle, see Eq. (5). 28, 30

𝜈 test function in finite element (FE) methods [15]. In i r e ne , it is denoted by the suffix of its related
function, e.g., the test function related to 𝑧 is 𝜈𝑧 . 28

𝜌 density [10]. 28

ℎ height of a rectangle which defines 𝜔. 19, 28

element an atomic part of a mesh [15, 23]. 28
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