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In adherent cells, actomyosin contractility is regulated mainly
by the RhoA signaling pathway, which can be controlled by op-
togenetics. To model the mechanochemical coupling in such sys-
tems, we introduce a finite element framework based on the dis-
continuous Galerkin method, which allows us to treat cell dou-
blets, chains of cells and monolayers within the same conceptual
framework. While the adherent cell layer is modeled as an ac-
tively contracting viscoelastic material on an elastic foundation,
different models are considered for the Rho-pathway, starting
with a simple linear chain that can be solved analytically and
later including direct feedback that can be solved only numer-
ically. Our model predicts signal propagation as a function of
coupling strength and viscoelastic time scales and identifies the
conditions for optimal cell responses and wave propagation. In
general, it provides a systematic understanding of how biochem-
istry and mechanics simultaneously contribute to the communi-
cation of adherent cells.
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Introduction
With the advent of mechanobiology, it has become clear that
biochemistry and mechanics play an equally important role
for the function of cellular systems (1, 2). For example, it
has been shown that stem cells actively sense the stiffness
of their environment, and that this mechanical input together
with soluble factors determines their subsequent differentia-
tion (3, 4). Later it has been shown that one important ele-
ment is the transcription factor Yes-associated protein (YAP),
which is activated on stiff substrates and in geometrical con-
finement (5, 6).
A close coupling between biochemistry and mechanics also
exists for multicellular systems. For example, it has been
shown that in wound healing and infection, neighboring ep-
ithelial cells coordinate their activity by mechanical activa-
tion of extracellular signal-regulated kinases (ERK) (7, 8). A
mathematical model demonstrated how wave propagation re-
sults from mutual feedback between mechanics and biochem-
istry: leader cells pull on their followers, ERK is activated in
the followers and activates contractility, which leads to forces
on the next row of followers (9, 10). A similar mechanism is
also realized by the tumour suppressor protein merlin, which
under mechanical force is relocalized from the cell-cell junc-
tions to the cytoplasm (11). Interestingly, the mechanism for
wave propagation is similar to the one for action potentials
in the neurosciences. In principle, the signal could go both

ways, but a refractory period in the sending part prevents the
wave from going backwards.
The general scheme of mechanochemical feedback leading
to complex systems behaviour is even more evident for de-
veloping organisms (12, 13). Here morphogen concentration
fields determine where cells grow and divide, and this leads
to changes of the domain in which signaling is active, which
in turn changes the way morphogens are secreted and dis-
tributed. Such feedback loops lead to non-linear systems dy-
namics which can explain the intricate patterns that emerge
during tissue formation and embryogenesis (12). One promi-
nent model organism is the fruit fly Drosophila, where exper-
imental observations have been coupled with mathematical
models (14, 15). Another one is the freshwater polyp Hydra,
which is able to regenerate its patterning even after being cut
in pieces (16–18). However, for such organismal systems it
is very challenging to achieve a systems level understand-
ing connecting molecular processes to the tissue scale. For
mechanistic understanding, it is therefore rewarding to turn
back to their elementary building blocks, the cells, and small
assemblies of such cells, with the long term aim to upscale to
larger systems.
To understand the coupling of biochemistry and mechanics
at the level of single cells, one must start with the actin
cytoskeleton (19–21). This is a network of actin filaments
and myosin II molecular motor proteins that determine the
mechanical properties of cells, particularly during processes
such as adhesion, migration, and division. Since the actin
cytoskeleton continuously consumes energy in the form of
adenosine triphosphate (ATP) to grow and reorganize its fila-
ments, generating forces and flows in the process, the appro-
priate modeling approach is to introduce active stresses that
are coupled to the chemical potential of the myosin II mo-
tors. This central concept led to the development of active
gel theory (22, 23). Active gel theory is commonly used to
model single-cell migration (24, 25), but can also be readily
extended to larger systems, such as tissue flow (26).
To incorporate more mechanistic details into the process of
force generation by cells, one must also consider how it is
regulated by the small GTPases from the Rho-family, includ-
ing RhoA, Rac1 and Cdc42 (21, 27). Briefly, Rac1 and Cdc42
primarily regulate the assembly of larger protrusive actin
structures, such as lamellipodia and filopodia, respectively,
while RhoA is predominantly responsible for the formation
of actomyosin contractility. The activity of these small GT-
Pases is controlled by many different Guanine Exchange Fac-
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tors (GEFs). If such a GEF activates RhoA, this in turn ac-
tivates Diaphanous-related formin (Dia) for actin polymer-
ization and Rho-associated protein kinase (ROCK) for con-
tractility through myosin II molecular motors (28). Together,
these effects then lead to productive force generation.

Several positive and negative feedback loops exist among
these components, leading to complex temporal dynamics
and pattern formation (21, 27). For instance, Bement et al.
(29) identified an activator-inhibitor relationship between
RhoA and F-actin, which results in the emergence of spiral
contraction waves during cytokinesis in Xenopus embryonic
cells. Similar surface contraction waves have been observed
in starfish oocytes during maturation, modeled by the cou-
pled reaction kinetics of actin and myosin II (30, 31). In a
systematic study, by combining nonlinear system dynamics
and experimental data, Kamps et al. (32) developed a detailed
model for the reaction kinetics of GEF, RhoA, and myosin
II. This model not only demonstrates the complexity of the
RhoA pathway, but also successfully explains the experimen-
tal observations of pulsatile contractions in the actin cortex,
identifying cytosolic GEFH1 as a crucial parameter for the
emergence of this pulsatile behavior.

While GEFs for the small GTPases from the Rho-family
sometimes are activated purely by biochemical pathways, of-
ten their activation results from mechanical forces (33–35),
similar to the cases of ERK (7, 9, 10) and merlin (11). Of-
ten, theoretical models incorporate these concepts by propos-
ing feedback mechanisms between mechanical tension and
biochemical signaling. For example, a positive biochemical-
mechanical feedback loop between forces exerted on focal
adhesions and RhoA signaling at these sites can explain
spatial gradients in the periodic myosin-α-actinin pattern in
stress fibers stimulated with calyculin A (36). Several math-
ematical studies combined simple models for Rho GTPase
activity and cell mechanics to demonstrate that their inter-
play leads to complex cell behaviors (37, 38). The authors
showed that their proposed system can exhibit bistability,
where the two states represent permanently contracted or
relaxed cells, and can also produce oscillatory states. Re-
cently, Staddon et al. (39) coupled a basic activator-inhibitor
reaction-diffusion system, comprising RhoA as the activator
and myosin II as the inhibitor, with the mechanics of vis-
coelastic solids and fluids. In this model, the interplay be-
tween biochemistry, actomyosin contractility, and viscoelas-
tic deformation leads to the emergence of propagating pul-
satile contractions and topological turbulence in flows of
RhoA.

In order to dissect these signaling pathways experimentally,
one usually works with inhibitors, which are small chemical
molecules that reduce the effect of certain components like
ROCK or myosin II. However, the concomitant results are of-
ten rather qualitative in nature and it is not always clear how
well the inhibitor reaches its putative target. Recently, opto-
genetics has emerged as a powerful alternative, which leads
to more quantitative results (40). In optogenetics, a light-
sensitive construct is engineered into the cells and can then be
activated with high temporal and spatial resolution. Among

others, this approach has been applied in several studies for
example to control neural activity (41), the regulation of gene
expression (42, 43) or even to regulate engineered metabolic
pathways in cells (44), which illustrates the versatility of this
method. In the field of mechanobiology it has become an
established technique to activate the Rho-pathway by recruit-
ing a GEF to the membrane (31, 45–47), thus allowing for
a precise spatiotemporal control of cytoskeletal dynamics of
single cells (48) and multicellular systems (49, 50).
The quantitative advances achieved by optogenetics now
open the door for a more detailed mathematical modelling of
the underlying processes. Different modelling frameworks
have been applied before to couple biochemistry and me-
chanics. One attractive option is the cellular Potts model,
which has been applied to both Rho/Rac-signaling (51) and
EKR-signaling (7). However, the framework is not able
to model active stresses in detail. Here we therefore turn
to active continuum mechanics, which is the natural frame-
work to describe local active stresses, as demonstrated by
the success of active gel theory (22–26). For the signaling
pathways, we rely on a description in terms of a system of
reaction-diffusion equations (32) solved on a geometrical do-
main which represents a cell ensemble strongly adhered to
an elastic foundation (48, 52, 53). Because both frameworks,
continuum mechanics and reaction-diffusion systems, lead to
partial differential equations (PDEs), we turn to the finite ele-
ment method (FEM), which is a standard way to numerically
solve PDEs. Because in addition we also aim for multicel-
lular systems, we specifically implement the discontinuous
Galerkin finite element method, because it offers a natural
way to represent the discontinuities at the cell-cell bound-
aries in multicellular systems. Here we first lay the concep-
tual basis for such an approach and then present representa-
tive applications for mechanochemical pattern formation in
multicellular systems controlled by optogenetics.
The manuscript is structured as follows. First we will intro-
duce the main concepts and equations, motivated by recent
experiments on optogenetic activation of cell doublets (49).
Our starting point is the observation that optogenetic activa-
tion of contractility in one cell triggers an active response
in a neighboring cell, compare Fig. 1a. For Rho-activation,
we start with a simple linear variant of the pathway, which
is sufficient to describe the recent experiments. We then
explore the consequences of this response, going from the
cell doublet on a H-pattern to increasingly larger systems,
namely cell chains and monolayers as commonly used in ex-
periments (49, 50), compare Fig. 1b. Finally, we will demon-
strate the generality of the simulation framework by address-
ing the case of a monolayer with a more dynamic model for
the reaction kinetics of the Rho-pathway (32).

Model
Coupling biochemistry and mechanics. Our theoretical
model is strongly motivated by recent experiments on cell
doublets on a H-pattern whose contractility is activated in the
left cell by Rho-optogenetics, such that one can follow the
response of the right cell in quantitative detail (49). The for-
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Fig. 1. Mechanochemical coupling in different geometries.
(a) Cells in contact with each other communicate through
mechanochemical coupling. In the cell doublet, the optogeneti-
cally controlled contraction of the left cell induces an active con-
tractile response in the right cell. (b) For spatial modelling, we
specify adhesion geometries commonly used in experiments. We
start with the cell doublet on an H-pattern and then continue to
cell chains and cell monolayers.

mulation of the model follows the central observation that
actively generated stresses within the cell layer depend on
the concentration of the downstream output of the RhoA-
pathway. Assuming that sufficient amounts of actin filaments
are generated by the Dia-leg, this is mainly the amount of
active myosin II generated by the ROCK-leg of the path-
way. The spatio-temporal distribution of actively generated
stresses depends also on the reaction kinetics and diffusive
properties of all upstream signalling proteins. The active
stresses may then lead to deformation of the cell which di-
rectly feeds back to the reaction-diffusion system by gener-
ating advection terms and changing concentrations. Conse-
quently, the spatiotemporal evolution of a signaling protein
concentration ci(x, t) is described by a reaction-diffusion-
advection equation on a two-dimensional time-dependent do-
main Ω(t),

∂ci

∂t
+∇· (v(x, t)ci) = ∇· (D∇ci))+Rci(t) , (1)

where D denotes the two-dimensional diffusion tensor, Rci

the reaction kinetics and the index i represents a signaling
protein in the RhoA pathway. Eq. (1) arises naturally by de-
manding local mass conservation on the time-dependent do-
main by following Reynold’s transport theorem. It includes
an advection term v · ∇ci due to flows induced by contrac-
tion and expansion and an enrichment/dilution term ci∇ · v
due to local volume changes, where v(x, t) corresponds to
the velocity of the deforming material. Hence, deformations
naturally interfere with the spatiotemporal evolution of the
protein concentrations. Eq. (1) is written in terms of spatial
(Eulerian) coordinates x which is a convenient choice for the
description of diffusion processes.
However, the deformation of the cell domain is better treated
in terms of referential (Lagrangian) coordinates x̂. The
two coordinate systems are related by the deformation field
û(x̂, t) = x(x̂, t) − x̂. We use Piola’s identity Ĵ∇ · a =
∇̂ · (ĴF̂−1â), where a is an arbitrary vector field and F̂ =
∂x/∂x̂ = I + ∇̂û the deformation gradient tensor with Ĵ =
det(F̂), to pull Eq. (1) back to the reference configuration Ω0
and express it in terms of Lagrangian coordinates as

∂

∂t
(Ĵ ĉi)−∇̂ · (ĴDĈ−1∇̂ĉi)− ĴRĉi

(t) = 0 . (2)

Here, ∇̂ denotes the derivative with respect to Lagrangian co-
ordinates, D = DI is assumed to be an isotropic tensor with
scalar diffusivity D and Ĉ = F̂TF̂ denotes the Cauchy-Green
deformation tensor. The velocity of the material is absorbed
into the time-derivative in the first term. For the details of
this derivation we refer to the supporting information. From
the first term in Eq. (2) we see that compression (∂tĴ < 0)
and dilation (∂tĴ > 0) of the elastic domain effectively al-
ters the reaction kinetics. Further, we see that the diffusion is
impacted by local deformations and can become anisotropic.
Following earlier work on cells as active materials, we de-
scribe the mechanics of the cell layer as a viscoelastic con-
tinuum with active stresses coupled to an elastic foundation
(48, 52, 54, 55) (compare Fig. 2a). We further assume that the
lateral extent of the cell layer is much larger than its average
height hc. This allows to obtain a two-dimensional model by
having conditions for plane-stresses within the elastic sheet.
The force balance equation then reads

∇·σ + f = 0 , (3)

where σ is the two-dimensional in-plane Cauchy stress tensor
and f denotes an externally applied two-dimensional body
force. The two-dimensional stress tensor is obtained by aver-
aging the three-dimensional stress tensor over the thickness
of the cell layer.
For the cell layer, we assume a linear viscoelastic constitutive
relation of the solid (Kelvin-Voigt) type. Although cells are
very dynamic and often are modelled by viscoelasticity of
the fluid (Maxwell) type, especially in active gel theory (23),
here we consider stably adhering cells that effectively behave
as solids due to homeostatic mechanisms, including volume
control. The Kelvin-Voigt law reads

σp =
(

1+ τc
∂

∂t

)
(λtr(ε)I+2µε) , (4)

where ε = (∇u + ∇uT)/2 denotes the infinitesimal strain
tensor and τc = ηc/Ec is the relaxation time defined by the
ratio of viscosity ηc and Young’s modulus Ec of the cell. Fur-
ther, we introduce the two-dimensional Lamé coefficients as

λ = νchcEc

1−ν2
c

, µ = hcEc

2(1+νc) , (5)
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where νc is the cellular Poisson’s ratio.
Actomyosin contractility is modeled by an active stress ten-
sor σa and the total cell stress is given by the sum of the
passive and active contributions, σ = σp +σa. The cell layer
is coupled to an elastic substrate which can be thought of as a
continuous layer of springs between the cell and a rigid sub-
strate (52, 56). In particular, the elastic foundation can also
describe an elastic substrate as commonly used in traction
force microscopy. It is described by a local force per unit
area

f = −Y u , (6)

where Y is the spring constant density ([Y ] = Nm−3) and u
the displacement field of the cell layer. In case of a micropat-
terned surface, the spring constant density becomes position
dependent and defines the adhesion geometry. Note that σ
measures stresses in the deformed configuration and is eval-
uated at spatial coordinates. This means that in order to ex-
press Eq. (3) in terms of referential coordinates one has to use
the first Piola-Kirchhoff stress tensor P̂. This distinction be-
comes important only in the limit of finite strains. In the limit
of small strains, i.e. small deformation gradients, we can as-
sume |∇̂û| ≪ 1 and only consider terms up to linear order
in ∇̂û for which we can approximate F̂−1 ≈ I − ∇̂û, Ĵ ≈
1 + tr(∇̂û) and Ĉ = I + ∇̂û + ∇̂û⊺ + O(|∇̂û|2) ≈ I + 2ε.
Given this small strain assumption, the two tensors only dif-
fer in terms O(|∇̂û|2), such that σ ≈ P̂. We will use referen-
tial coordinates for the force balance and constitutive relation,
respectively.
The boundary of the cells is non-permeable for the signal-
ing proteins and hence, we impose zero-flux boundary con-
ditions at the interface between cell interior and cell exterior
j · N = 0 on ∂Ω0 with j = ĴDĈ−1∇̂ĉi being the diffusive
flux. Besides ensuring mechanical integrity, an inherent fea-
ture of intercellular junctions, e.g. tight junctions, is to main-
tain compartmentalisation in tissues by acting as a barrier for
fluids and solutes. Therefore also the cell-cell junctions are
non-permeable, which is incorporated by imposing an inter-
nal zero-flux boundary condition on ΓCCJ. As no external
stresses are applied at the boundary ∂Ω0 of the sheet, we have
the boundary condition σ · N = 0 on ∂Ω0. The net traction
force exerted by the cell layer vanishes as

∫
Ω0

Y u dΩ0 = 0,
as required for a closed system.
In summary, the model can be formulated as follows: Find
the displacement field u together with the concentrations ĉi

of the signaling species such that

∇·σ = Y u in Ω0, (7)
∂

∂t
(Ĵ ĉi)−∇̂ · (ĴDĈ−1∇̂ĉi)− ĴRĉi

(t) = 0 in Ω0 , (8)

together with the boundary conditions

σ ·N = 0 on ∂Ω0, (9)

−ĴDĈ−1∇̂ĉi ·N = 0 on ∂Ω0, (10)

−ĴDĈ−1∇̂ĉi ·NCCJ = 0 on ΓCCJ . (11)

In addition to the geometrically arising coupling between the
RD-system and mechanics as described by Eqs. (7, 8), we

de
fo
rm
at
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n

m
echanosensitivity

ba

left cell right cell

Fig. 2. Mechanochemical model for a cell doublet. (a) A cell doublet of thickness
hc stably adheres to an elastic foundation via springs that are homogeneously
distributed over the area defined by the H-shaped micropattern. The cell doublet
(Young’s modulus Ec, viscosity ηc) is characterised by a cell-cell junction (red line;
ΓCCJ) separating the two cells (Ωl, Ωr ) along the vertical symmetry axis of the mi-
cropattern (y-axis). The elastic properties of the cell are sketched in the inset. The
elastic substrate is described via the spring stiffness density Y . (b) The simplest
model for the signaling cascade is a linear chain in which mechanosensitivity leads
to activation of the first signaling protein and the last signaling protein determines
active stresses. All other signaling proteins experience a natural feedback resulting
from deformation of the cell domain during contraction.

introduce two additional coupling mechanisms as schemati-
cally illustrated in Fig. 2b. First, we couple the output of the
RD-system, i.e. the concentration of the last signaling protein
of the activation cascade cout, to active stresses σa (red arrow
in Fig. 2b). For this we relate ĉout(x̂, t) to σa via a relation
(39, 57)

σa(ĉout) = σ0 tanh(Sĉout) , (12)

where σ0 is the maximal contractile stress and S a parame-
ter which controls how sensitive stress generation is. Since
tanh(x) ≤ 1 everywhere, we additionally ensure that ac-
tive stresses are bound and hence avoid numerical instabil-
ities. Second, we introduce mechanosensitivity by relating
the mechanical perturbations to the activation of the most up-
stream signaling protein ĉ1 in the reaction-diffusion system,
see Fig. 2b (yellow arrow). In our model, the mechanical per-
turbation can either be force-related (measured in terms of
internal stresses) or deformation-related (expressed in terms
of strain or compression/stretch). From the perspective of
continuum mechanics, these measures are provided by the
Cauchy stress tensor σ and the Cauchy strain tensor ε (or the
deformation gradient tensor F). To make this coupling inde-
pendent of the frame of reference, for each of the different
measures we can choose between two tensor invariants (for
a 2D system), the trace or the determinant (58). Motivated
by experimental studies in a strain-controlled experimental
setup, showing that cells respond directly to stretch (59), we
decide to introduce a strain-dependent feedback. Without
specifying a specific RD-system, we assume an activation
rate of the first signaling protein due to passive strains via
a source term of the form

∂tĉ1 = ac1 tr+(ε) , (13)

where ac1 is a generic activation rate which might depend
on other quantities depending on the specific choice for the
RD-system (similar to Hino et al. (7)). The plus sign in-
dicates that coupling is only present in regions of positive
strains, i.e. tr+(ε) := max(0,tr(ε)). We want to empha-
size that the magnitude of ac1 has to be chosen such that if
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multiplied by tr+(ε) it results in an appropriate rate for the
strain-dependent feedback.

Simple model for the Rho-pathway with optogenetic
activation. Although the RhoA-pathway allows for complex
dynamics, earlier work has shown that at least in cells with
strong adhesion, the actin cytoskeleton is regulated in the
vicinity of a stable fixed point of this pathway (48, 49). One
aspect could be that strongly adherent cells exhibit domi-
nant stress fibers. Since stress fibers are highly organized
structures, it is plausible to assume a differently organized
reaction-diffusion system than for e.g. the homogeneous
actin cortex in egg cells (29). Indeed it has been shown
recently that different organizations of the actin cytoskele-
ton lead to different activation and relaxation times in the
Rho-pathway (48). Another aspect might be the observation
that the stability of the RhoA-pathway has a strong depen-
dence on the total GEF-concentration (32). This suggests
that the total GEF expression levels, which are naturally ele-
vated in cells transfected with an optogentic construct, render
their RhoA-system more stable. Since cells transfected with
the CRY2/CIBN system show a significantly higher baseline
contractility, we assume that this might correspond to the sta-
ble branch of high GEF-concentrations (32).

First, we want to focus on this regime and describe optoge-
netic activation as a reversible process such that after activa-
tion cells eventually go back to their homeostatic contractility
level without showing any significant oscillatory or excitable
behavior upon photoactivation. Excitability is therefore com-
pletely controlled by the recruitment of a GEF to the mem-
brane and can be scaled by the duration of the activation light
pulse until saturation sets in (45, 46). Motivated by these ob-
servations, we first assume a linear input-output relationship
between GEF plasma membrane recruitment and myosin II
induced contractility. This assumption not only reduces the
number of unknown parameters, it also allows for an ana-
lytical solution of the homogeneous system, such that it can
be fully understood. Our proposed RhoA-myosin reaction
scheme is shown in Fig. 3a. GEF activity enters implicitly
through a predefined input signal which we describe by a
function

g(t) = gss +gae
−λ(t−tact)H(t− tact) = gss + δg(t) . (14)

Here gss represents a normalized steady-state GEF concen-
tration (fraction of active GEF, for t ≤ tact). After an abrupt
light-mediated increase of concentration ga at t = tact (where
H(t) is the Heaviside function), the time course of GEF con-
centration for t > tact follows a decaying exponential.

This input signal consequently triggers a reaction cascade by
activating RhoA which in turn activates myosin II. All reac-
tions are modeled by a law of mass action with positive val-
ued activation rate constants a and k̃. Further we assume that
all active components deactivate spontaneously described by
the positive valued rate constants b and s and we express the
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Fig. 3. Simple model for the RhoA-pathway. (a) Optogenetic activation of strongly
adherent cells often results in a homeostatic response, which is described best by
a weakly activated linear signaling cascade. For weak perturbations, the strength of
the output signal scales linearly with strength of the input signal. (b) Time course of
the normalized concentration perturbations of active RhoA (blue) and myosin (red)
after rapid increase of GEF concentration (black) upon photoactivation at t = tact.
The dashed line represents a sigmoidal fit to the increasing edge of the myosin
concentration in order to estimate the time scale of the increase τδm̃ ≈ 11s. The
inset shows the time evolution of the full system of ODEs in the phase-plane. The
green line displays the evolution into the only stable fixed point of the system. Two
perturbations for α = 2 (gray) and α = 4 (black) are shown and demonstrate the
linearity and scalability of the system.

reaction kinetics as

dR

dt
= ag(t)(RT −R)− bR (15)

dM

dt
= k̃R(MT −M)−sM (16)

where for brevity we write Ra ≡ R and Ma ≡ M . Here we
additionally assume that the total amount of each signaling
component is conserved on the studied time scale, such that
concentrations of the inactive species Ri and Mi are given
by the difference of the total concentration and the active
concentration Ri = RT − R and Mi = MT − M . Another
simplification is made by considering the limit of a weakly
activated signaling cascade (60) for which RT −R ≈ RT and
MT −M ≈ MT such that the system can be written as

dr

dt
= ag(t)− br ,

dm

dt
= kr −sm , (17)

where we divided by the total concentration and hence set r =
R/RT , m = M/MT and k = k̃RT . Before photoactivation
(t ≤ tact) we have δg(t) = 0 and in this case obtain the stady-
state concentrations for RhoA and myosin as

rss = agss

b
, mss = ak

bs
gss . (18)

The time evolution after perturbation (t > tact) may generally
be written as

r(t) = rss + δr(t) , m(t) = mss + δm(t) , (19)
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where δr(t) and δm(t) denote the time-dependent perturba-
tions of the steady state. Together with Eq. (17) we end up
with the time evolution of the perturbation which is given by

dδr

dt
= aδg(t)− bδr ,

dδm

dt
= kδr −sδm . (20)

In experiments one usually quantifies the relative activity in-
crease with respect to the activity baseline. We therefore nor-
malize the perturbation with respect to the steady state con-
centrations and obtain

dδr̃

dt
= b(δg̃(t)− δr̃) ,

dδm̃

dt
= s(δr̃ − δm̃) , (21)

with δg̃(t) = δg(t)/gss The strength and time course of the
relative RhoA and myosin perturbations is controlled by the
two deactivation rates b and s as well as the strength of
the input signal α ≡ ga/gss and its decay rate λ. For the
parametrization of this linearized model we refer the reader
to the supplementary text. This system of equations Eq. (21)
can be solved analytically for a spatially homogeneous sys-
tem (solution given in supplemental text). Typical time
courses of the perturbations are shown in Fig. 3b, where the
inset displays the time evolution of Eq. (17).

Results
Optogenetic activation of a cell doublet. We start by sim-
ulating the cell doublet, cf. Fig. 2, with linear Rho-signaling
as shown in Fig. 3. The corresponding computer code is doc-
umented in the supplemental text and the mechanical equa-
tions are parametrized according to Table S3. We keep all
parameters fixed, except the strength of the strain-dependent
feedback aδg̃ and the viscoelastic time scale τc. Since we
are mainly interested in the response to the perturbation, we
omit baseline contractility, i.e. we do not consider a strain
in the cell layer before activation. The reference shape was
chosen to resemble the typical reference shape of a maturely
adherent cell doublet with a vertical oriented cell-cell junc-
tion across the symmetry center of the pattern and two pro-
nounced invaginated arcs spanning between the vertical bars
of the H-shaped micropattern (49). The cells are assumed to
contract isotropically with σa = σa(δm̃)I.
We optogenetically activate the left cell Ωl at time t = tact,
compare Fig. 4a. The time evolution of the GEF-perturbation
for t ≥ tact is given by

dδg̃

dt
= −λδg̃ +aδg̃ tr+(ε)1Ωr (x) , (22)

where we include the strain dependent feedback in the right
cell via the indicator function 1Ωr (x) with 1Ωr (x) = 1 if x ∈
Ωr and 1Ωr (x) = 0 otherwise. This means that the strain-
dependent feedback is only active in the right cell Ωr. Having
a feedback mechanism in the left cell we can expect non-
trivial temporal behavior if positive passive strains build up
in the left cell.
The optogenetic activation at tact = 5s is achieved by set-
ting δg̃(tact) = α. This time point is shown in Fig. 4a with
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Fig. 4. Simulation of the optogenetic activation of a cell doublet. (a) Activated region
(in black) and the GEF perturbation δg̃(tact) = 2 at tact = 5s. In accordance with
experiments, only a fraction of the left cell is illuminated in order to avoid illumination
of the right cell. (b) Coupling measure trε in the non-activated cell (right cell) which
reaches its maximal value of approx. 5 · 10−3 after 20 s. (c) Myosin concentration
δm̃ around the time of maximal strain energy. (d) Frobenius norm of the resulting
Cauchy stress. The parameters for this simulation can be found in Tables S2 and
S3. Further we used aδg̃ = 100s−1, τc = 10s, S = 1 and time step ∆t = 0.5s.
Full time sequence shown as Movie S1. Weak coupling shown as Movie S2.

a 100% increase (α = 2) of the steady-state GEF concentra-
tion upon photoactivation. This GEF perturbation triggers
the RhoA-pathway which leads to active contraction in the
activated left cell. As contraction in the left cell progresses,
passive positive strains are generated in the right cell as it
is stretched (Fig. 4b). This stretch leads to activation of
GEF and hence triggers a contractile response in the right
cell. Fig. 4c and d show the active myosin in both cells as
well as the Frobenius norm of the resulting Cauchy stress

||σ||F =
√∑2

i,j=1 |σij |2, respectively, for a case where pa-
rameters are chosen such that both cells deform approxi-
mately symmetrically. We note that the active myosin pattern
closely follows the pattern of passive strains in the right cell
with concentration peaks near the cell periphery at the cell-
cell junction. Looking at the stress pattern, we further notice
that the left cell contracts stronger than the right cell. How-
ever, the invaginated arc remains fairly symmetrical. This
demonstrates that a visually symmetrical contraction can oc-
cur even when both cells do not contract equally strongly,
but at different locations within the cell. Here the left cell
generates active stresses mainly near the vertical bar of the
H-pattern, while the right cell generates active stresses more
near the periphery.
To investigate these observations further we define different
measures in order to understand the input-output relation be-
tween the left and right cell and to quantify the efficiency
of the coupling. One way to quantify this is to measure the
strain-energy Us transfered to the substrate

Us,i = 1
2

∫
Ω0,i

Y (x)u2 dΩ0,i , i ∈ {l, r} (23)

and compare the strain energy deposited on the left and right
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Fig. 5. Mechanochemical coupling in cell doublets. (a) One measure for the asymmetry of the process is monitoring the deposited strain energies Us in the left and right
halves of the micropattern, respectively. Another measure is monitoring shape changes through asymmetry A, which follows from the integrals under the left and right halves
of the contour. (b) Cell shapes in simulations with weak and strong active coupling. Stronger coupling may lead to visually symmetric contraction. Black line represents
contour shape at last time step. (c) Effects of weak and strong coupling in terms of strain energy as a function of time. Strain energy curves were normalized with respect to
the maximum of the total strain energy curve. (d) Same for shape asymmetry. (e) Efficiency of the coupling defined by the ratio of the relative maxima Umax

s,l /Umax
s,tot for the

left vs. Umax
r,l /Umax

s,tot for the right cell, for different combinations of the free parameters, namely coupling strength aδg̃ and viscoelastic time scale τc. For sufficiently large
coupling one sees optimal coupling if the viscoelastic time scale corresponds to the time scale of the linear activation cascade.

parts of the pattern (Fig. 5a (left)). Another way is to mea-
sure the asymmetry A of the contraction by quantifying the
shape of the contour y(x) with respect to the symmetry axis
of the pattern and the inward displacement of the cell contour
(Fig. 5a (right))

A = Il − Ir

I
, (24)

with Ii =
∫

Ωx,i
y(x)dx, i ∈ {l, r}.

In Fig. 5b we show the shape of the invaginated arc through-
out the whole contraction process. This demonstrates that
the symmetry of the contraction is strongly shaped by the
coupling described by the rate aδg̃ . For a stronger coupling
(large value of aδg̃) the cell doublet contracts visually sym-
metrically in comparison to a weaker coupling (small value
of aδg̃), where invagination of the contour is clearly asym-
metric and tends towards the activated cell.

In Fig. 5c we show the normalized strain energy Us as a func-
tion of time, where each strain energy is normalized with re-
spect to the maximal total strain energy Us,tot. We observe
that the time course of the total strain energy is only slightly
changed by the coupling strength aδg̃ . In the case of weak
coupling more than 90% of the deposited strain energy is
generated by the left cell and the right cell remains almost
completely passive. Note that even for aδg̃ = 0 the strain
energy on the right hand side of the pattern is expected to
be non-zero due to passive deformations by pulling of the
left cell. In case of a strong coupling the right cell shows
an active response and significantly contributes to the overall
generated strain energy. These observations are confirmed
by a quantification of the contour deformation as a function
of time. For the weak coupling the contour remains strongly
asymmetric throughout the majority of the simulation time.
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For the strong coupling asymmetry is only present for small
times until the right cell actively pulls back and symmetrizes
the periphery (Fig. 5d).
Until now we only altered the rate aδg̃ and kept the viscoelas-
tic time scale τc constant. We next addressed the question of
how the viscoelastic properties of the cell influence the effi-
ciency of the coupling and therefore simulated several com-
binations of aδg̃ and τc by varying both parameters over sev-
eral orders of magnitudes. We consider the coupling to be
efficient, if the ratio Umax

r,l /Umax
s,tot is high. The results are

displayed in Fig. 5e.
For both quantifications we find that coupling efficiency is
positively correlated with the coupling strength aδg̃ . As a
function of the viscoelastic time scale we notice that cou-
pling efficiency increases with an increasing viscoelastic time
scale, reaches an optimum around intermediate values and
decreases again for larger values of of τc. The optimal value
for τc is found to be at τc = 10s, which is in the same order
of magnitude as experimentally measured values (48, 61). A
sigmoidal fit to the time course of the myosin concentration
(Fig. 3b) yields a time scale of τδm̃ ≈ 11s similar to the vis-
coelastic time scale. This result suggests that for an efficient
mechanochemical coupling the viscoelastic time scale, i.e.
the time scale at which the cell can react to mechanical stim-
uli, has to be in tune with the time scale at which the full
linear cascade can react to those. In case of very large τc

the left cell cannot deform sufficiently to trigger a response
in the right cell. For small values of τc the right cell starts
to counteract deformations quickly and does not remain in a
stretched state for a sufficiently long time to allow the cou-
pling mechanism to unfold its action.

Optogenetically stimulated contraction wave in a
chain of cells. Having established a framework for the
mechanochemical interplay of two cells, we can generalize to
more cells, for example a chain of cells on a micropatterned
line (compare Fig. 1b). It is the strength of our discontinu-
ous Galerkin approach that now such simulations are easy to
implement and very efficient. The cell chain is realized com-
putationally by connecting equally sized cells along the x-
axis. Each cell now adheres in a homogeneous fashion to an
elastic substrate. In contrast to the doublet, we here include
a mechanochemical coupling also for the activated cell, thus
we allow for the possibility that a wave is reflected at the right
and comes back to the left. To model that many cell types
tend to polarize when placed on lines, we use a unidirectional
active stress tensor such that cells only contract in longitudi-
nal direction of the line of cells σa = σa(δm̃)(ex ⊗ ex). All
parameters used in the simulation are given in Tables S2 and
S4.
We now activate the left cell at t = tact. The time evolution
of the GEF-concentration for t > tact is then described by

dδg̃

dt
= −λδg̃ +aδg̃ tr+(ε) . (25)

As for the previous study of the cell doublet, we again vary
the parameters τc and aδg̃ to investigate the response of the
system. Depending on parameters, we now observe three

different responses: (1) non-transmissive (the stimulus dies
out); (2) transmissive wave propagation, i.e. the most right
cell is activated once; and (3) oscillatory waves going persis-
tently through the system.
Fig. 6a depicts the displacement field for the different states.
Note that the displacement field is directly correlated with
the generated traction forces through T = Y u. In the case of
a non-transmissive parameter regime, i.e. for small aδg̃ , the
contraction signal strongly decays during propagation from
cell 1 (left) to cell 5 (right) and no substantial traction forces
are generated at the right end of the line of cells, see Fig. 6a
on the left. This observation has been quantified by compar-
ing the substrate strain energies generated by cell 1 and 5 as
a function of time, see Fig. 6b on the left.
With increasing values of aδg̃ , the transmission of the signal
becomes more and more efficient and the active response of
cell 5 comparable to cell 1, see the middle panels of Fig. 6a
and b. Whether the signal transmission is effective or not
depends on the context; here we decided to call the system
transmissive if Umax,5

s > 0.1Umax,1
s .

Finally, varying also the viscoelastic time scale of the sys-
tem, we observe persistent oscillatory states in the parameter
regime of sufficiently large aδg̃ and τc, see the right panels
of Fig. 6a and b. The frequency of the oscillations depends
strongly on the combination of aδg̃ and τc and can be fur-
ther classified into burst-like oscillations and contractile os-
cillations. The former correspond to large variations in strain
energy, while the latter relate to small fluctuations around an
elevated increased strain energy plateau (see Fig. S2).
Fig. 6c shows the phase diagram as a function of the cou-
pling strength and the viscoelastic time scale. For a strongly
coupled system (i.e. sufficiently large aδg̃), the transition
between transmissive and oscillatory states occurs around
τc ≈ 10s, which again coincides with the time scale of the
myosin relaxation. The number of cells in the line is also rel-
evant for the signal transmission. Fig. 6d shows that the tran-
sition from non-transmissive to transmissive mechanochemi-
cal signaling needs larger values of aδg̃ when increasing the
length of the cell chain. This emphasizes that mechanochem-
ical signaling tends to be of dissipative nature, and hence a
cell can reach out only to a limited number of other cells, ex-
cept if a strong amplification exists, like in action potentials.

Cell monolayer with non-linear Rho-pathway. We finally
turn to a cell monolayer (compare Fig. 1b). Again the nu-
merical implementation is relatively easy given our discon-
tinuous Galerkin approach and we demonstrate this here for
28 hexagonally arranged cells. In contrast to the cell dou-
blet on a H-pattern and the line of cells, we now cannot as-
sume anymore that the cells in the layer are polarized. This
also implies that the simple linear chain model for the Rho-
pathway might not be sufficient anymore and that more com-
plex dynamics might arise. We therefore now use the full
non-linear model for the Rho-pathway as established earlier
by Kamps et al. (32). The corresponding kinetic equations
are given in Eqs. (S29-S31) (supplemental text). As investi-
gated in Kamps et al. (32), they exhibit Turing-type instabil-
ities resulting from fast (inactive) and slow (active) diffusing
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Fig. 6. Mechanochemical coupling in a chain of cells. (a) Kymographs of the substrate displacement field normalized to the maximal displacement for five cells in a row and
for three different conditions. At t = 5s cell 1 (left) is activated (blue bar). The contraction of the activated cell initiates a contraction wave propagating from cell 1 (left) to cell
5 (right). Depending on the parameters we observe non-transmissive (N), transmissive (T) or oscillatory states (O). For sufficiently large strain-dependent feedback aδg̃ and
sufficiently large viscoelastic time scale τc, self-sustained oscillations emerge. (b) Time evolution of the strain energy for the activated cell 1 and cell 5, i.e. the last cell of the
line, corresponding to the kymographs given in (a). (c) Phase diagram as a function of activation strength and viscoelastic times scale. Strong coupling and large viscoelastic
times are required for oscillations. (d) Effect of cell number. The transition from non-transmissive to transmissive occurs at larger values of aδg̃ with increasing length of the
cell chain (error bars highlight discrete parameter sampling). A full simulation is given as Movie S3.

species paired with positive and negative feedback loops of
activator-inhibitor type. Here we have chosen the parameters
for the RD-system such that traveling waves can form.
The cell monolayer is shown in Fig. 7a with intercellular
junctions shown in red and the color code depicting the lev-
els of active stress/active myosin. The cell in the middle on
the left hand side of the monolayer was activated by inducing
an instability through small random fluctuations in the GEF-
and RhoA-concentrations (the same effect can be obtained
by optogenetic activation, but for the non-linear model, the
exact mode of activation is less relevant). Several distinct
contraction peaks form and the induced deformations slowly
activate the RhoA-pathway and allow the active stresses to

spread through the tissue, as indicated by the white arrows
in Fig. 7a. The initially weak and rather uniform contrac-
tions eventually turn into strong and more localized travel-
ing contraction waves, see Fig. 7b, until the whole mono-
layer is strongly activated, see Fig. 7c. For longer times, a
dynamic steady state is reached, where the deformations are
most prominent near the free edges, see Fig. 7d.

Discussion and Conclusion
Here we have shown that the discontinuous Galerkin (DG)
finite element method (FEM) is ideally suited to model
mechanochemical coupling in cell layers. Because both the
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Fig. 7. Mechanochemical coupling in a cell monolayer with a non-linear model for the Rho-pathway. (a) Total stress in the tissue shortly after inducing a spatio-temporal
contraction pattern in the centered cell on the left side of the tissue. This initial perturbation spreads by means of the mechanochemical feedback through the tissue (white
arrows). (b) and (c) Tissue at a later stage, where the initially small perturbations have developed into substantial contraction waves in each of the cells. (d) After transient
dynamics, prominent deformations are visible in the free edges of the cell layer (white arrow and inset). Parameters can be found in Table S1 and Table S5. Full dynamics
shown as Movie S4.

reaction-diffusion (RD) and the continuum mechanical mod-
els lead to partial differential equations (PDEs), finite ele-
ments are the natural approach to couple them in a numer-
ically efficient framework. The DG method in addition is
ideal to include cell boundaries while still keeping the contin-
uous nature of the PDEs. Our approach is very general both
in terms of biochemistry (as exemplified by the linear reg-
ulation cascade versus the fully nonlinear reaction-diffusion
system) and the material law (here a linear Kelvin-Voigt-type
material). Motivated by the homeostatic nature of adherent
cell layers, it is however centered on elastic systems. For
flowing systems, which are typically modeled with active gel

theory (22–26), one had to switch from the Lagrangian to the
Eulerian framework.

We benchmarked our approach by investigating in detail the
optogenetic activation of a cell doublet on a H-shaped mi-
cropattern, as recently studied experimentally in Ref. (49).
We then exemplified the scalability by looking at force and
signal transmission via contraction waves in chains of cells,
similar to recent experiments on optogenetic activation of
cell trains (50). In these two cases, cell-matrix adhesion is
very strong and cells tend to be homeostatic, which means
that they return to baseline after optogenetic stimulation (48).
Therefore we used the simple model of a linear chain for
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the Rho-signaling pathway. We finally addressed the case of
mechanochemically excitable monolayers, which are known
to develop more complex dynamic patterns, possibly because
cell-cell adhesion dominates and cells are less polarized. In
particular, experiments have found that wave propagation is
rather common in such systems (7, 9, 10). In this case, we
therefore used a more comprehensive and non-linear model
for the Rho-pathway (32).
In all of these cases, we identified conditions under which
mechanochemical signaling leads to strong propagation of
the signal from one cell to the other, and even to wave prop-
agation. We find that force transmission is best when the vis-
coelastic time scale of the cell and the time scale of relaxation
of the Rho-pathway after activation are of the same order. For
the cell doublet, we used the coupling to an elastic foundation
as a readout of the mechanical coupling of the two neighbor-
ing cells, in addition to the asymmetry in shape. In the future,
the coupling to the elastic foundation could be replaced by a
continuum substrate; then one could also model the effect
of mechanical cell-cell communication through the substrate,
which would be a natural extension of our approach. On the
biochemical side, it would be interesting to go beyond mod-
elling of the Rho-pathway and also include the effect of other
known signaling molecules, including Rac/Cdc42, ERK and
merlin. The numerical DG FEM framework established here
now opens the door to quickly explore the effect of such path-
ways, and thus to establish a multiscale modeling framework
that connects molecular processes to effective systems behav-
ior.
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Modelling mechanochemical coupling
in optogenetically activated cell layers

- Supplemental text -

D. Wörthmüller, F. Ziebert and U.S. Schwarz

General notation

In solid mechanics one typically expresses model equations in the Lagrangian (material) framework by
describing a deforming solid in terms of coordinates x̂ representing the position of material particles
in the undeformed configuration Ω0. The current position of the material particles in the deformed
configuration Ω(t) at time t are given by x = χ(x̂, t). The two configurations are connected by
the displacement vector field û(x̂, t) = x(x̂, t) − x̂. The deformation gradient tensor is defined as
F̂ = ∂x/∂x̂ = I+∇̂û and measures the local change of relative position of two points at the transition
from the undeformed to the deformed configuration. Its determinant Ĵ = det(F̂) represents the local
volume change. Describing the governing equations in terms of the coordinates x is known as the
Eulerian framework where a fixed point in space is observed. In the limit of linear elasticity we do not
distinguish between Lagrangian and Eulerian description and drop the ∧-symbol.

Reaction-diffusion on time dependent domains in Lagrangian
frame of reference

For the pull-back of
∂ci
∂t

+∇ · (v(x, t)ci) = ∇ · (D∇ci)) +Rci(t) (S1)

to the reference configuration (Lagrangian coordinates) we exploit the transformation rules for scalar
and vector fields as well as the involved differential operators (1). For mappings between the two
reference systems we use the motion function x = χ(x̂, t). Each Eulerian field has a Lagrangian
counterpart which states the equivalence of the two descriptions. Hence we write c(x, t) = ĉ(x̂, t) for
the concentration field and v(x, t) = v̂(x̂, t) for the velocity field. Here v̂ = ∂tχ(x̂, t) denotes the
material velocity. For the gradient of the scalar field c(x, t) it holds

∇c = F̂−⊺∇̂ĉ . (S2)
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For the gradient of the vector field v we have

∇v = ∇̂v̂F̂−1 . (S3)

The divergence of the vector field transforms according to

∇ · v =
1

Ĵ
∇̂ · (ĴF̂−1v̂) , (S4)

and we note that Piola’s identity is given by

∇̂ · (ĴF̂−1) = 0 . (S5)

The material time derivative of a field expressed in Eulerian coordinates is given by the convective
derivative

d

dt
c(x, t) =

∂

∂t
c+ v · ∇c ≡ ∂ĉ

∂t
(S6)

Starting from the reaction-diffusion equation in Eulerian coordinates

∂ci
∂t

+ v · ∇ci + ci(∇ · v) = ∇ · (D∇ci)) +Rci(t) , (S7)

we note that the first two terms correspond to the convective time derivative. The third term on
the left and the first term on the right hand side of the equation can be replaced by using the Piola
transform Eq. (S4) such that

∂ĉi
∂t

+ ĉi
1

Ĵ
∇̂ · (ĴF̂−1v̂) =

1

Ĵ
∇̂ · (ĴF̂−1DF̂−⊺∇̂ĉi)) +Rĉi(t) , (S8)

and after multiplying by Ĵ we obtain

Ĵ
∂ĉi
∂t

+ ĉi∇̂ · (ĴF̂−1v̂) = ∇̂ · (ĴF̂−1DF̂−⊺∇̂ĉi)) + ĴRĉi(t) . (S9)

Applying Piola’s identity to the second term on the left we find

ĉi∇̂ · (ĴF̂−1v̂) = ĉiĴF̂
−1∇̂v̂ = ĉiĴF̂

−1∂F̂

∂t
= ĉi

∂ det(F̂)

∂t
= ĉi

∂Ĵ

∂t
, (S10)

and further using Ĉ = F̂TF̂ we end up with

∂

∂t
(Ĵ ĉi) = ∇̂ · (ĴDĈ−1∇̂ĉi) + ĴRĉi(t) . (S11)

Finite-Element formulation

Symmetric Weighted Interior Penalty Discontinuous Galerkin method

The interface condition on the cell-cell junction

−ĴDĈ−1∇̂ĉi ·NCCJ = 0 on ΓCCJ , (S12)
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leads to a discontinuity in the solution. In order to account for abrupt concentration changes from
one subdomain to the other we need a method which allows discontinuous functions across the
membrane. The standard choice for such a problem is the discontinuous Galerkin method. In contrast
to the continuous Galerkin methods, continuity and smoothness of the involved DG-functions is only
enforced element-wise such that the solution may be discontinuous across element boundaries. If
and where desired, continuity can be enforced through an appropriate penalty term. These methods
are known as interior penalty discontinuous Galerkin methods (IPDG) (2–4). However, as can be
seen from Eq. (S11) the diffusivity α ≡ ĴDĈ−1 in the Lagrangian frame is position dependent due
to local deformations of the domain. Hence, we are dealing with heterogeneous diffusion and use a
Symmetric Weighted Interior Penalty (SWIP) discontinuous Galerkin scheme (5). Let T (Ω0) be the
triangulation of the domain Ω into finite elements e ∈ T (Ω0). Further, let F denote the union of the
boundary facets of all elements e. We distinguish between external facets Fext, internal facets Fint and
membrane facets FM such that F = Fext ∪Fint ∪FM with Fint = F \ (Fext ∪FM). Next, by ĉ− and
ĉ+ we denote scalar valued functions on two neighboring elements e− and e+. The normal vectors on
a common facet of e± are given by N±. For example, N− defines the outward directed normal on e−
pointing into e+. Following the SWIP-DG notations we introduce the jump and the weighted average
of a quantity as [[ĉ]] ≡ ĉ+N+ + ĉ−N− and {ĉ}ω ≡ ω+ĉ+ + ω−ĉ−, respectively. Analogously, for
piecewise vector valued functions q̂ one defines jump and weighted average as [[q̂]] ≡ q̂+N++ q̂−N−
and {q̂}ω ≡ ω+q̂++ω−q̂−, respectively. The weights are defined as ω± = δ∓α /(δ

+
α +δ−α ), where δ

∓
α is

obtained from the diffusivity on two neighbouring elements e∓ by calculating δ∓α = Ñ⊺
eα∓Ñe. Note

that the weights fulfill ω++ω− = 1. Since we are only interested in having a discontinuity across the
membrane facets FM we introduce a diffusion dependent penalty term to penalize jumps across all
other internal facets Fint which is defined as the harmonic mean γα = 2δ+α δ

−
α /(δ

+
α + δ−α ). Moreover,

one may use these definitions to prove the identity

[[q̂ĉ]] = [[q̂]]{ĉ}ω + {q̂}ω[[ĉ]] . (S13)

In the first step of the derivation of the DG weak form we multiply Eq. (S11) with a suitable test
function vc ∈ V and integrate over the whole simulation domain Ω0 which gives∫

Ω0

∂

∂t
(Ĵ ĉ)vc dΩ0 −

∫
Ω0

∇̂ ·
(
α∇̂ĉ

)
vc dΩ0

−
∫
Ω0

ĴRc(t)vc dΩ0 = 0 . (S14)

Instead of directly using partial integration on the middle term of Eq. (S14) we first split it into a
sum over element integrals and then apply Green’s first theorem to obtain∫

Ω0

∇̂ ·
(
α∇̂ĉ

)
vc dΩ0 =

∑
e∈T (Ω0)

∫
e

∇̂ ·
(
α∇̂ĉ

)
vc dΩ0

=
∑

fe∈F(Ω0)

∫
fe

α∇̂ĉ · Ñevc ds

−
∑

e∈T (Ω0)

∫
e

α∇̂ĉ · ∇̂vc dΩ0 .

(S15)
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Here, fe denotes the facets of element e and Ñe describes the outward directed normal vector on
the facets of the element. The first term in Eq. (S15) is split again into the exterior, interior and
membrane facets∑

fe∈F(Ω0)

∫
fe

α∇̂ĉ · Ñevc ds =
∑

fe∈Fext(Ω0)

∫
fe

α∇̂ĉ · Ñevc ds+
∑

fe∈Fint(Ω0)

∫
fe

α∇̂ĉ · Ñevc ds

+
∑

fe∈FM(Ω0)

∫
fe

α∇̂ĉ · Ñevc ds . (S16)

Note that each internal facet and each membrane facet is shared by two adjacent elements e− and
e+ (see Fig. S1) such that integrals along the common facets add up to a jump∫

f±

α∇̂ĉ · Ñ±vc ds =

∫
f

(δ+α ∇̂ĉ+vc,+ − δ−α ∇̂ĉ−vc,−) · Ñ+ ds =

∫
f

[[α∇̂ĉvc]] ds . (S17)

Summing up over all elements e in Eq. (S15) and Eq. (S16) while respecting zero-flux boundary
conditions yields∫

Ω0

∇̂ ·
(
α∇̂ĉ

)
vc dΩ0 = −

∫
Ω0

α∇̂ĉ · ∇̂vc dΩ0 +

∫
Fint

[[α∇̂ĉvc]] ds . (S18)

The last term in Eq. (S18) is further expanded using the identity in Eq. (S13) which yields∫
Fint

[[α∇̂ĉvc]] ds =

∫
Fint

[[α∇̂ĉ]] · {vc}ω ds+

∫
Fint

{α∇̂ĉ}ω · [[vc]] ds . (S19)

Since the exact solution of the diffusion equation is expected to be smooth we enforce continuity of
the fluxes by setting [[α∇̂ĉ]] = 0. To further enforce continuity of the solution we exploit [[ĉ]] = 0 and
add a term to symmetrize the problem. Additionally, we ensure stability of the problem by adding a
stabilizing term according to Ern et al. (5) and Douglas and Dupont (6) which finally leads to∫

Fint

[[α∇̂ĉvc]] ds =

∫
Fint

{α∇̂ĉ}ω · [[vc]] ds+
∫
Fint

{α∇̂vc}ω · [[ĉ]] ds−
∫
Fint

sN
h
γα[[ĉ]] · [[vc]] ds . (S20)

In Eq. (S20), sN denotes the so-called Nitsche paramater, which must be chosen sufficiently large to
ensure continuity across internal facets (7), and h the average element diameter. Next, we define

D(ĉ, vc,α) :=

∫
Ω0

α∇̂ĉ · ∇̂vc dΩ0 −
∫
Fint

{α∇̂ĉ}ω · [[vc]] ds

−
∫
Fint

{α∇̂vc}ω · [[ĉ]] ds+
∫
Fint

sN
h
γα[[ĉ]] · [[vc]] ds , (S21)

and hence arrive at the final weak form statement of Eq. (S11) which reads∫
Ω0

∂

∂t
(Ĵ ĉ)vc dΩ0 +D(ĉ, vc,α)−

∫
Ω0

ĴRc(t)vc dΩ0 = 0 . (S22)
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We note that an integral part of our model design is that continuity is only enforced on the internal
edges. Thus jumps are possible only across the interface of the two subdomains i.e. across the
membrane. In our case this means that the reactants in each cell cannot pass the cell-cell junction.
This leads to a variety of possibilities in the treatment of multicellular systems. Cellular contractility
in principle can be described by distinct reaction-diffusion systems in each cell. The RD-systems
within the cells can then be coupled by appropriate mechano-chemical coupling terms to account for
mechanosensing at the intercellular junction.

The weak form of Eq. (S11) finally reads

0 =

∫
Ω0

∂

∂t
(Ĵ ĉ)vc dΩ0 +

∫
Ω0

α∇̂ĉ · ∇̂vc dΩ0

−
∫
Fint

{α∇̂ĉ}ω · [[vc]] ds︸ ︷︷ ︸
consistency

−
∫
Fint

{α∇̂vc}ω · [[ĉ]] ds︸ ︷︷ ︸
symmetry

+

∫
Fint

sN
h
γα[[ĉ]] · [[vc]] ds︸ ︷︷ ︸
penalty

−
∫
Ω0

ĴRc(t)vc dΩ0 ,

where sN denotes the Nitsche paramater, which must be chosen sufficiently large to ensure continuity
across internal facets (7), and h the average element diameter. The notation is illustrated in Fig. S1a.

Weak formulation for the elastic domain

To derive the weak formulation of
∇ · σ = Y (x)u , (S23)

we multiply with a vector valued test function v ∈ V(Ω0) and integrate over the domain Ω0 of the
undeformed configuration ∫

Ω0

(∇ · σ) · v dΩ0 =

∫
Ω0

Y (x)u(x) · v dΩ0 . (S24)

The left hand side can be integrated using integration by parts i.e. using the following identity

∇ · (σ · v) = (∇ · σ) · v + σ : ∇v . (S25)

This allows to simplify Eq. (S24) to∫
Ω0

σ : ∇v dΩ0 −
∫
Γ

(σ ·N) · v ds+

∫
Ω0

Y u · v dΩ0 = 0 . (S26)

Here, σ ·N is the traction vector at the boundary Γ = ∂Ω0 which is set to zero in case of stress free
boundaries and hence, the final weak form statement reads∫

Ω0

σ : ∇v dΩ0 +

∫
Ω0

Y u · v dΩ0 = 0 . (S27)

5



Time-discretisation

All time dependent quantities Q(t) are discretized using an implicit (backward Euler) scheme at a
given time t(n+1) (

dQ

dt

)(n+1)

≈ Q(n+1) −Q(n)

∆t
. (S28)

Mesh generation

The meshes for the three different systems were generated with Gmsh (9). For the cell chain and
the tissue-like monolayer we made sure to create a mesh which respects the symmetry of the system.
The meshes are shown in Fig. S1c.

Literature review RhoA-pathway

Having reviewed the relevant literature, we found that the model as presented by Kamps et al.
(8) contains all important components which are necessary for a profound description of the RhoA
pathway. In contrast to the RhoA-actomyosin system as introduced by Staddon et al. (10) it explicitly
contains GEF as a downstream effector of RhoA, and thus provides an important interface for light-
induced contraction as GEF activity can be controlled by optogenetic constructs like the CRY2/CIBN
system. In combination with experimental measurements Kamps et al. (8) proposed a reaction scheme
for the active reactants GEF (G), RhoA (R) and myosin (M) which reads

dG

dt
= k3R(GT −G)− k4GM (S29)

dR

dt
=

k1G(RT −R)

Km1 +RT −R
− k2

R

Km2 +R
(S30)

dM

dt
=

k5R(MT −M)

Km5 +MT −M
− k6

M

Km6 +M
. (S31)

GT , RT and MT denote the total concentrations of the species which the authors assume to be
constant. The rate constants are denoted by ki and the Michaelis-Menten constants are given by the
Kmi.

The membrane and cytosol associated species represent the active and passive states, respectively.
This terminology stems from experimental studies which show that the active forms of RhoA and
myosin are predominantly found in the vicinity of the plasma membrane and the submembraneous
actin cortex. In contrast, the inactive forms are associated with the cytosol (11, 12). The RhoA protein
for example exhibits a lipophilic end which enables it to bind to lipid membranes (13). However, so-
called guanosine dissociation inhibitors (GDIs) may bind to Rho-GDPs, not only keeping them in a
permanently inactive state but also preventing its membrane localization by shielding the hydrophilic
end and additionally making it soluble in the cytoplasm (14). The reaction scheme also highlights the
two feedback loops which are important to describe the excitable and oscillatory dynamics that are
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observed in experiments (see Fig. S1 d). The positive feedback loop stems from the observation that
RhoA activity at the membrane further induces GEF membrane recruitment. Due to Rho activation by
GEFs, this closes a positive feedback loop (8). The negative feedback loop can be traced back to the
ability of myosin to inhibit the nucleotide exchange activity of GEFs by binding to their Dbl-homology
domain (DH) (15). Essentially, the authors could identify the total concentration of active GEF as
the main bifurcation parameter for the switch from stable to oscillatory states at intermediate GEF
concentrations. In experiments, they vary this bifurcation parameter by treating cells with nocodazole,
which leads to depolymerization of microtubules from which GEFs are then released. The crossover
from stable to osciallatory dynamics happens as a function of the total GEF concentration.

Parametrization

Non-linear RhoA pathway

For the simulations with the non-linear Rho pathway we follow Kamps et al. (8). In Eqs. (S29) to (S31)
we treat the inactive species separately with ci = cT − c. The inactive species diffuse faster than the
active species Dc,i > Dc. The reaction kinetics are given by Rci = −Rc. Hence, for the non-linear
system we have a total of six coupled reaction diffusion equations coupled to the PDE describing
the cell layer. Fig. S1d shows the schematic of the coupled system of PDE’s. The reaction diffusion
system alone exhibits instabilities that lead to the emergence of traveling wave peaks. To induce an
instability we impose initial conditions on the active species by adding small random fluctuations of
the form

c0(x) = c̄0 + δc0(0.5− U[0,1](x)) , (S32)

where U[0,1](x) is the probability density function of the continuous uniform distribution, c̄0 the ho-
mogeneous concentration field and δc0 a small flucutation. For the inactive species we set ci,0(x) =
cT − c0(x). Fluctuations are δG0 = 0.05, δR0 = 0.01 and δM0 = 0. All other relevant parameters
can be found in Tab. S1 or in the supplemental information of (8).

Linearized RhoA pathway

For the parametrization of the proposed linear signaling cascade we rely on the order of magnitudes
found in the respective literature. Within the limits of our simplified model the total concentrations
of RhoA and myosin are irrelevant since they do not explicitly enter the reaction kinetics in the
weakly activated regime. The parameters are chosen such that the steady state concentrations of
RhoA and myosin are roughly 10% of the total concentration (10, 16). Further, the reaction rates
are chosen such that the time course of the myosin concentration approximates the typical time
course of actively generated stresses during optogenetic activation (8, 10, 17–19). The time course
of the input signal was adapted to the measured CRY2 membrane recruitment and is described by
a relaxation time of λ ≈ 10−2 s (20). The reference values from (8) were estimated as follows.
The second term in Eq. (S30) can be approximated in a weakly activated regime with Km2 ≫ R
as k2R/(Km2 + R) ≈ k2R/Km2 ≡ b ≈ 2 s−1. The same argument applied to the second term in

7



Eq. (S31) gives k6M/(Km6 +M) ≈ k6M/Km6 ≡ s ≈ 0.0051 s−1. k can be estimated from the first
term in Eq. (S31) by k5/(Km5 +MT ) = k̃ = 0.004 65 s−1 from which k = k̃RT = 0.002 s−1 follows.
All relevant parameters are summarized in Tab. S2.

Elastic layer

For the parametrisation of the cell and the substrate we follow the typical orders of magnitude. Cell
and substrate have a Young’s modulus E in the range of several kPa. For simplicity we choose
Ec ≈ Es, which also reflects that cells typically adapt to the stiffness of their environment. The
viscoelastic time scale τc is a free parameter in the simulations and hence the viscosity of the cell layer
is defined by ηc = τcEc. The spring stiffness density is calculated by Ys = πEs/Lc (21), where Lc is
the lateral extent of a cell. All other relevant parameters are summarized in Tables S3 to S5.

Analytical solution of the weakly activated signaling cascade

Beguerisse-D́ıaz et al. (22) provide a variety of analytical solutions to weakly activated signalling
cascades triggered by different input signals i.e. time course of the stimulus such as step-function,
Gaussian or, as in our case, an exponential decreasing perturbation. The signaling species x∗

1 is
activated by an external stimulus, which in turn activates species x∗

2, and so on. In a weakly activated
regime and for x∗

i (0) = 0 (which is the initial condition for the perturbations δr and δm) the output
function of species x∗

n is given by

x∗
n(t) =

(
n∏

i=1

αi

)
n∑

i=1

(
n∏

q=1,q ̸=i

(βi − βq)
−1

)

×
∫ t

0

e−βi(t−τ)A(τ) dτ . (S33)

Here αi and βi denote the activation and deactivation rates of each species i, respectively, and A(t)
is a stimulus applied to the first species. Applied to the system of equations

dδr

dt
= aδg(t)− bδr ,

dδm

dt
= kδr − sδm , (S34)

together with A(τ) = δg(τ) = gae
−λτ (as in the main text) this leads to

δr̃(t) =
δr

rss
=

bα

b− λ

(
e−λt − e−bt

)
, (S35)

δm̃(t) =
δm

mss
= bαs

(
e−λt − e−bt

(b− s)(b− λ)
− e−λt − e−st

(b− s)(s− λ)

)
. (S36)
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Description of movies

Movie S1: Strain-dependent feedback in a cell doublet with strong coupling. Activation of the left
cell leads to substantial contraction in the right cell. Although optogenetic stimulation is only applied
to the left cell, the whole doublet contracts as a unit i.e. symmetrically. Parameters used as listed in
Tab. S2 and Tab. S3 with aδq̃ = 100 and τc = 10s.

Movie S2: Strain-dependent feedback in a cell doublet with weak coupling. Activation of the left cell
leads to weak contraction in the right cell. This leads to an overall asymmetric shape deformation of
the whole doublet in which the right cell gets pulled to the left. Parameters used as listed in Tab. S2
and Tab. S3 with aδq̃ = 0.1 and τc = 10s.

Movie S3: Propagation of a contraction wave through a cell chain visualized by the deformation
field (color code: red color corresponds to displacement to the right, blue to the left). Optogenetic
activation of the left cell leads to a contraction. The coupling to the neighboring cell induces a
contraction which propagates from the left end of the cell chain to the right end. Parameters used as
listed in Tab. S2 and Tab. S4. Coupling and viscoelastic time scale where chosen from the transmissive
regime. Red lines indicate initial cell-cell boundary positions.

Movie S4: Propagation of contraction wave through a tissue-like monolayer comprised of 28 cells.
Here, the contractility is controlled by the non-linear Rho-pathway which in itself exhibits wave-like
instabilities. The parameters are chosen according to Tab. S1 and Tab. S5. At early times, an
instability is triggered in the centered cell on the left by adding small random fluctuations on the GEF
and Rho component. These random fluctuations lead to several concentrated traveling wave peaks
which in turn trigger GEF activation in adjacent cells through the strain-dependent coupling. Thus,
a contraction wave spreads through the whole tissue activating all cells and triggering the wave-like
instability. The emerging activation pattern represents the up-down symmetry of the tissue. Cells at
the free edge (edge with no cell-cell boundary) strongly deform when a contraction peak gets close
to the free cell edge.
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Figure S1: Panel (a) and (b) schematically explains the notation used in the derivation of the dis-
continuous Galerkin finite element method. Panel (c) depicts the meshes for the three cell systems.
Colors highlight different cells. For cell chain and tissue-like monolayer we enforced meshes to respect
the symmetry of the system’s geometry. Panel (d) shows the coupled system of the non-linear RhoA
pathway by Kamps et al. (8) coupled to the mechanics of the elastic layer. Mechanical feedbacks
represented by yellow and blue arrows.
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Figure S2: Different oscillations observed in a cell chain coupled to the linearized RhoA pathway.
Burst-like oscillations (left) correspond to large variations in strain energy while contractile oscillations
(right) corresponds to states in which the whole cell chain remains on average in a state of non-
vanishing strain energy.
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Abbreviation Value

GEF

GT 0.2M
k3 1.19M−1s−1

k4 3.98M−1s−1

DG 0.3 µm2 s−1

DGi
9.28 µm2 s−1

RhoA

RT 0.443M
Km1 2.42M
Km2 0.0745M
k1 (3.88Km1)s

−1

k2 (2.04Km2)Ms−1

DR 0.3 µm2 s−1

DRi
9.28 µm2 s−1

Myosin

MT 1.24M
Km5 0.014M
Km6 0.784M
k5 (0.417Km5)s

−1

k6 (0.00509Km9)Ms−1

DM 0.03 µm2 s−1

DMi
0.9 µm2 s−1

Table S1: Parameter values for the non-linear Rho pathway with fast and slow diffusing species
according to (8). Here, we use M to indicate units of concentration which corresponds to 106

molecules per cell (as given in the SI of (8)).
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Abbreviation Used value Ref. value Reference

λ 0.01 s−1 0.008 s−1 − 0.018 s−1 (20)
α 100% 20%− 130% (20)
b 0.0165 s−1 2 s−1 (8)
k 0.1 s−1 0.1408 s−1 (10)

0.002 s−1 (8)
s 0.083 s−1 0.0051 s−1 (8)

0.082 s−1 (10)
mss 0.1 0.1− 0.8 (10)

(16)
DR, DG 0.3 µm2 s−1 0.28 µm2 s−1 (8)

0.1 µm2 s−1 (23)
DM 0.03 µm2 s−1 0.03 µm2 s−1 (8)

0.01 µm2 s−1 (23)

Deduced

rss 0.083
a 0.0014 s−1 < 0.002 s−1 (10)

Table S2: Parameter values for the linearized RhoA signaling cascade. We set most of the parameters
in accordance with the reported ranges. The parameters taken from (8) where obtained by taking the
corresponding activation and deactivation rates in a weakly activated regime for which the Michaelis-
Menten terms can be linearly approximated. However, their model does not provide a basal activation
rate. The reported rate constants as stated in the work of Staddon et al. (10) were deduced from
Michaux et al. (24). The parameters rss and a are not independent and consequently deduced from
the fixed parameters.
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Abbreviation Value

Cell parameters

Young’s Modulus Ec 5 · 103Pa
Poisson’s ratio νc 0.5
Cell height hc 1 · 10−6m
Lateral extent Lc 45 · 10−6m
Two-dimensional active stress σ0 2 · 10−3Nm−1

Substrate parameters

Young’s Modulus Es 5 · 103Pa
Poisson’s ratio νs 0.5

Table S3: Parameter values for the simulation of the cell doublet on an H-pattern

Abbreviation Value

Cell parameters

Young’s Modulus Ec 5 · 103Pa
Poisson’s ratio νc 0.5
Cell height hc 1 · 10−6m
Lateral extent Lc 40 · 10−6m
Two-dimensional active stress σ0 2 · 10−3Nm−1

Substrate parameters

Young’s Modulus Es 2.5 · 103Pa
Poisson’s ratio νs 0.5

Table S4: Parameter values for the simulation of the cell chain with continuous adhesion and unidi-
rectional contraction.
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Abbreviation Value

Cell parameters

Young’s Modulus Ec 2.5 · 103Pa
Poisson’s ratio νc 0.5
Cell height hc 1 · 10−6m
Lateral extent Lc 40 · 10−6m
Two-dimensional active stress σ0 2.5 · 10−3Nm−1

Substrate parameters

Young’s Modulus Es 1 · 103Pa
Poisson’s ratio νs 0.5

Table S5: Parameter values for the simulation of the tissue-like monolayer with non-linear Rho-
pathway. Here, we chose a smaller Young’s modulus for the cell, a softer substrate and a slightly
larger value for active stress in order to allow for more visible deformations.
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Example for python FEM-code for photoactivation of a cell
doublet on H-pattern

Our model was implemented in the FEM-framework FEniCS (25). This is an example code for the
photoactivation of a cell doublet with mechanochemical feedback.� �

1 # Import required libraries for finite element analysis and data processing
2 from dolfin import ∗ # FEniCS/DOLFIN for finite element computations
3 import numpy as np # Numerical computations
4 import random # Random number generation
5 import copy # Deep copying of objects
6 import matplotlib.pyplot as plt # Plotting utilities
7 from ufl import tanh # Hyperbolic tangent function
8 from numpy import savetxt # Array saving utility
9 import pandas as pd # Data manipulation and analysis

10 import os # Operating system interface
11 import csv # CSV file operations
12

13 ’’’ Finite-Element-Simulation of a coupled system of reaction-diffusion equations and 2D
viscoelasticity

14

15 This code implements a coupled mechanochemical model for cell mechanics using FEM.
16 The model combines:
17 1. Reaction-diffusion equations for biochemical species
18 2. 2D viscoelastic mechanics for cell deformation
19 3. Mechanochemical feedback between strain and signaling
20

21 Copyright: Dennis Woerthmueller
22 Date: February 14, 2024
23 ’’’
24

25 # Create data directory for simulation outputs
26 path_to_rawData = ’Data/’
27 if not os.path.exists(path_to_rawData):
28 os.makedirs(path_to_rawData)
29

30 # Load simulation parameters from CSV file
31 with open(’inputParams.csv’, newline = ’’) as file:
32 reader = csv.reader(file, quoting = csv.QUOTE_NONNUMERIC,
33 delimiter = ’ ’)
34 rows = list(reader)
35 keys = rows[0] # Parameter names
36 values = rows[1] # Parameter values
37

38 # Create parameter dictionary from keys and values
39 key_value_pairs = zip(keys, values)
40 p = dict(key_value_pairs)
41

42 def calculateStrainEnergy(u, kN, dx):
43 """
44 Calculate the elastic strain energy in the substrate.
45

46 Args:
47 u (Function): Displacement field
48 kN (Expression): Spring constant field
49 dx (Measure): Integration measure
50

51 Returns:
52 float: Total strain energy
53 """
54 return assemble(0.5∗kN∗inner(u,u)∗dx)
55

56 class KNExpression(UserExpression):
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57 """
58 Define position-dependent spring constants for an H-shaped micropattern.
59

60 The pattern consists of two vertical arms connected by a horizontal crossbar.
61 Spring constants are non-zero only within the pattern.
62 """
63 def __init__(self,Y, armWidth, degree=2):
64 print("BIS HIER")
65 super().__init__()
66 self.armWidth = armWidth # Width of pattern arms
67 self.Y = Y # Young’s modulus / spring constant
68

69 def eval(self, value, x):
70 """
71 Evaluate spring constant at given position.
72

73 Args:
74 value: Output value (modified in-place)
75 x: Spatial coordinates
76 """
77 d = 1 # Domain size
78 # Set spring constant Y in arms and crossbar, 0 elsewhere
79 if (x[0] <= -(d/2)+self.armWidth or x[0] >= (d/2)-self.armWidth or
80 between(x[1],(-self.armWidth/2,self.armWidth/2))):
81 value[0] = self.Y
82 else:
83 value[0] = 0.0
84

85 def normalize_solution(U, max):
86 """
87 Normalize solution vector by dividing by maximum value.
88

89 Args:
90 U (Function): Solution vector to normalize
91 max (float): Maximum value to normalize by
92

93 Returns:
94 Function: Normalized solution vector
95 """
96 U_array = U.vector().get_local()
97 U_array /= max
98 U.vector()[:] = U_array
99 return U

100

101 def eps(v):
102 """
103 Calculate strain tensor from displacement field.
104

105 Args:
106 v (Function): Displacement field
107

108 Returns:
109 Tensor: Symmetric gradient (strain tensor)
110 """
111 return sym(grad(v))
112

113 class selectedSubdomain(UserExpression):
114 """
115 Mark specific subdomains with different values.
116 Used to identify and assign properties to different regions.
117 """
118 def __init__(self, subdomains, val_inside, val_outside, subdomain_id, ∗∗kwargs):
119 super().__init__()
120 self.subdomains = subdomains # Subdomain markers
121 self.val_inside = val_inside # Value inside selected subdomain
122 self.val_outside = val_outside # Value outside selected subdomain
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123 self.subdomain_id = subdomain_id # ID of subdomain to mark
124

125 def eval_cell(self, values, x, cell):
126 """
127 Evaluate marker value for each cell.
128

129 Args:
130 values: Output value (modified in-place)
131 x: Spatial coordinates
132 cell: Current cell
133 """
134 if self.subdomains[cell.index] == self.subdomain_id:
135 values[0] = self.val_inside
136 else:
137 values[0] = self.val_outside
138

139 class SquareCompartmentDoublet(UserExpression):
140 """
141 Define square compartment for cell doublet simulation.
142 Used to create initial conditions and activation patterns.
143 """
144 def __init__(self,A,d, degree=0):
145 super().__init__()
146 self.A = A # Amplitude
147 self.d = d # Distance/size parameter
148

149 def eval(self, value, x):
150 """
151 Evaluate compartment value at given position.
152

153 Args:
154 value: Output value (modified in-place)
155 x: Spatial coordinates
156 """
157 if (x[0] <= -self.d):
158 value[0] = self.A
159 else:
160 value[0] = 0.0
161

162 def get_boundary_of_deformed_mesh(u, geo_file_name):
163 """
164 Extract boundary coordinates of deformed mesh.
165 Used for tracking boundary deformation over time.
166

167 Args:
168 u (Function): Displacement field
169 geo_file_name (str): Base name of geometry files
170

171 Returns:
172 numpy.array: Sorted boundary coordinates
173 """
174 # Load mesh and boundary definitions
175 dummy_mesh = Mesh("%s.xml"%(geo_file_name))
176 boundaries = MeshFunction("size_t", dummy_mesh, "%s_facet_region.xml"%(geo_file_name))
177 subdomains = MeshFunction("size_t", dummy_mesh, "%s_physical_region.xml"%(geo_file_name))
178

179 # Apply displacement to mesh
180 ALE.move(dummy_mesh, u)
181 V_mesh = FunctionSpace(dummy_mesh, "CG", 1)
182 v2d = vertex_to_dof_map(V_mesh)
183

184 # Extract boundary vertices
185 dofs = []
186 for facet in facets(dummy_mesh):
187 if boundaries[facet.index()] == 2: # Top boundary
188 vertices = facet.entities(0)
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189 for vertex in vertices:
190 dofs.append(v2d[vertex])
191

192 # Sort and return boundary coordinates
193 unique_dofs = np.array(list(set(dofs)), dtype=np.int32)
194 boundary_coords = V_mesh.tabulate_dof_coordinates()[unique_dofs]
195 col = 0
196 boundary_coords_sorted = boundary_coords[np.argsort(boundary_coords[:,col])]
197 return boundary_coords_sorted
198

199 def DGWeakFormRD(c, cn, vc, Dc, u, J, J_n, F, n, dx, dS, dSM, dt, cellularisation=True):
200 """
201 Construct weak form for reaction-diffusion equations using Discontinuous Galerkin method.
202

203 Args:
204 c (Function): Current concentration
205 cn (Function): Previous concentration
206 vc (TestFunction): Test function
207 Dc (float): Diffusion coefficient
208 u (Function): Displacement field
209 J (Expression): Current Jacobian
210 J_n (Expression): Previous Jacobian
211 F (Expression): Deformation gradient
212 n (Expression): Normal vector
213 dx (Measure): Volume measure
214 dS (Measure): Interior facet measure
215 dSM (Measure): Interface measure
216 dt (float): Time step
217 cellularisation (bool): Whether to include cell interface terms
218

219 Returns:
220 Form: Complete weak form for reaction-diffusion equation
221 """
222 # Calculate geometric quantities
223 F_inv = inv(F)
224 F_inv_T = inv(F).T
225 I = Identity(2)
226 eps = sym(grad(u))
227

228 # Numerical parameters
229 h = 0.1 # Mesh size parameter
230 sN = 50 # Penalty parameter
231

232 # Modified diffusion tensor including geometric factors
233 alph = J∗(I-2∗eps)∗Dc
234

235 # Calculate interface terms for DG formulation
236 delt_p = dot(n(’+’), alph(’+’)∗n(’+’))
237 delt_m = dot(n(’-’), alph(’-’)∗n(’-’))
238

239 # Weights for averaging
240 w_pos = delt_m/(delt_p+delt_m)
241 w_neg = delt_p/(delt_p+delt_m)
242

243 # Average terms for concentration gradients
244 grad_c_avg_term = w_pos∗alph(’+’)∗grad(c)(’+’)+w_neg∗alph(’-’)∗grad(c)(’-’)
245 grad_vc_avg_term = w_pos∗alph(’+’)∗grad(vc)(’+’)+w_neg∗alph(’-’)∗grad(vc)(’-’)
246

247 # Interface penalty parameter
248 gamma = 2∗delt_p∗delt_m/(delt_p+delt_m)
249

250 # Time derivative terms
251 time_deriv = J∗(c-cn)/dt∗vc∗dx+(J-J_n)/dt∗c∗vc∗dx
252

253 # Standard diffusion term
254 standard = dot(alph ∗ grad(c), grad(vc)) ∗ dx
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255

256 # Interface terms based on cellularisation flag
257 if cellularisation:
258 # Terms for internal cell boundaries
259 consistency = -dot(jump(vc,n),grad_c_avg_term)∗dS + dot(jump(vc,n),grad_c_avg_term)∗dSM
260 symmetry = - dot(grad_vc_avg_term, jump(c,n))∗dS + dot(grad_vc_avg_term,jump(c,n))∗dSM
261 penalty = sN/h∗gamma∗dot(jump(vc, n), jump(c,n))∗ dS - sN/h∗gamma∗dot(jump(vc,n), jump(c, n))∗

dSM
262 else:
263 # Terms without internal boundaries
264 consistency = -dot(jump(vc,n),grad_c_avg_term)∗dS
265 symmetry = - dot(grad_vc_avg_term, jump(c,n))∗dS
266 penalty = sN/h∗gamma∗dot(jump(vc, n), jump(c,n))∗ dS
267

268 # Combine all terms
269 weakForm = time_deriv + standard + consistency + symmetry + penalty
270

271 return weakForm
272

273 # Output file names
274 name = ’simulation_output’ # Name of the output xdmf-file
275 geo_file_name = ’cell_doublet_shape_nonDim’ # Name of gmsh .geo-file
276

277 def simulation():
278 """
279 Main simulation function implementing a mechanochemical feedback model.
280

281 The simulation couples three main components:
282 1. Reaction-diffusion system for GEF-RhoA-Myosin signaling
283 2. Viscoelastic mechanics for cell deformation
284 3. Mechanochemical feedback through strain
285

286 Uses mixed finite elements: DG for concentrations, CG for displacement.
287 """
288 # --------------------------------------------------------------------------
289 # Initialize mesh and finite element structures
290 # --------------------------------------------------------------------------
291 # Convert mesh from Gmsh format to FEniCS XML format
292 if not os.path.exists(’%s.xml’%(geo_file_name)):
293 os.system(’dolfin-convert %s.msh %s.xml’%(geo_file_name,geo_file_name))
294

295 # Load mesh and domain definitions
296 mesh = Mesh("%s.xml"%(geo_file_name))
297 boundaries = MeshFunction("size_t", mesh, "%s_facet_region.xml"%(geo_file_name))
298 subdomains = MeshFunction("size_t", mesh, "%s_physical_region.xml"%(geo_file_name))
299

300 # Save domain definitions for visualization
301 file_results = XDMFFile("subdomains.xdmf")
302 file_results.write(subdomains)
303 file_results = XDMFFile("boundaries.xdmf")
304 file_results.write(boundaries)
305

306 # Define measures for integration
307 dx = Measure(’dx’, domain=mesh, subdomain_data=subdomains) # Volume measure
308 dS_all = Measure(’dS’, subdomain_data=boundaries) # Surface measure
309 dSM = dS_all(1) # No-flux interface measure
310

311 # Initialize domain markers
312 cell1 = selectedSubdomain(subdomains, 1, 0, subdomain_id = 1, degree=0) # Active cell
313 non_opto_cell = selectedSubdomain(subdomains, 0, 1, subdomain_id = 1, degree=0) # Non-

photoactivated cell
314 n = FacetNormal(mesh) # Normal vector

field
315

316 # Define finite elements for mixed formulation
317 P1 = FiniteElement(’DG’, triangle, 1) # DG elements for concentrations
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318 P2 = VectorElement(’CG’, triangle, 1) # CG elements for displacement
319 element = MixedElement([P1, P1, P1,P2]) # Combined element
320 V = FunctionSpace(mesh, element) # Mixed function space
321

322 # Initialize function spaces for output fields
323 # DG spaces for scalar fields
324 dFE_DG0 = FiniteElement("DG", mesh.ufl_cell(), 0)
325 dFE_DG1 = FiniteElement("DG", mesh.ufl_cell(), 1)
326 dFE_CG1 = FiniteElement("CG", mesh.ufl_cell(), 1)
327 dFE_CG2 = FiniteElement("CG", mesh.ufl_cell(), 2)
328

329 # Tensor spaces for stress/strain fields
330 TensorSpace_DG0 = TensorFunctionSpace(mesh, "DG", 0)
331 TensorSpace_DG1 = TensorFunctionSpace(mesh, "DG", 1)
332 TensorSpace_CG1 = TensorFunctionSpace(mesh, "CG", 1)
333 TensorSpace_CG2 = TensorFunctionSpace(mesh, "CG", 2)
334

335 # Create function spaces
336 W_DG0 = TensorSpace_DG0 # DG0 tensor space
337 W_DG1 = TensorSpace_DG1 # DG1 tensor space
338 W_CG1 = TensorSpace_CG1 # CG1 tensor space
339 W_CG2 = TensorSpace_CG2 # CG2 tensor space
340

341 # Scalar function spaces
342 K_DG0 = FunctionSpace(mesh, dFE_DG0)
343 K_DG1 = FunctionSpace(mesh, dFE_DG1)
344 K_CG1 = FunctionSpace(mesh, dFE_CG1)
345 K_CG2 = FunctionSpace(mesh, dFE_CG2)
346

347 # Vector function space for displacement
348 V_CG1 = VectorFunctionSpace(mesh,"CG",1)
349

350 # Initialize output functions
351 # Vector fields (displacement and traction)
352 disp = Function(V_CG1, name=’Displacement’)
353 TractionF = Function(V_CG1, name=’Traction’)
354

355 # Scalar fields for molecular species
356 GEF = Function(K_DG0, name=’GEF’) # GEF concentration
357 RhoA = Function(K_DG0, name=’RhoA’) # RhoA concentration
358 Myosin = Function(K_DG0, name=’Myosin’) # Myosin concentration
359 GEF_inactive = Function(K_DG0, name=’GEF inactive’)
360 RhoA_inactive = Function(K_DG0, name=’RhoA inactive’)
361 Myosin_inactive = Function(K_DG0, name=’Myosin inactive’)
362

363 # Scalar fields for mechanics
364 activatedCell = Function(K_DG0, name=’Activated Cell’)
365 nonOptoCells = Function(K_DG0, name=’Non-opto Cells’)
366 pattern = Function(K_DG0, name=’Micropattern’)
367 Jacobian = Function(K_DG0, name=’detF’)
368 JacobianPositive = Function(K_DG0, name=’detF +’)
369 feedbackPositive = Function(K_DG0, name=’feedback’)
370 hypTangentPositive = Function(K_DG0, name=’tanh’)
371 traceGreenLagrange = Function(K_DG0, name=’trE’)
372 traceGreenLagrangePositive = Function(K_DG0, name=’trE +’)
373 detCauchyStressPositive = Function(K_DG0, name=’det(CS) +’)
374

375 # Tensor fields for stress and strain
376 Cauchystress = Function(W_DG0, name=’Cauchy Stress’)
377 Cauchystress_passive = Function(W_DG0, name=’Passive Cauchy Stress’)
378 Pstress = Function(W_DG0, name=’Piola1 Stress’)
379 Pstress_passive = Function(W_DG0, name=’Passive Piola1 Stress’)
380 activeStress = Function(W_DG0, name=’Active Stress’)
381 strainGreenLagrange = Function(W_DG0, name=’E (GL Strain)’)
382 defGrad_save = Function(W_DG0, name=’Deformation Gradient Tensor’)
383 CauchyGreenInverse_save = Function(W_DG0, name=’Inverse Cauchy Green’)
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384

385 # Diffusion tensors
386 diffTensor_G = Function(W_DG0, name=’alpha_G’)
387 diffTensor_R = Function(W_DG0, name=’alpha_R’)
388 diffTensor_M = Function(W_DG0, name=’alpha_M’)
389

390 # Initialize output file
391 xdmf_file = XDMFFile(path_to_rawData+"%s.xdmf"%(name))
392 xdmf_file.parameters["flush_output"] = True
393 xdmf_file.parameters["functions_share_mesh"] = True
394

395 # Define spring constant field for substrate
396 kN = KNExpression(p[’Ys_N’], p[’armWidth_N’], degree=2)
397

398 # Set time discretization parameters
399 DT = 0.5 # Time step size
400 dt = Constant(DT) # FEniCS constant for time step
401 t = DT # Current time
402 T = 500 # End time
403 t_opto = 5 # photoactivation
404

405 # Initialize variational problem components
406 dU = TrialFunction(V) # Trial function
407 U_tot = Function(V) # Current solution
408 U_tot_n = Function(V) # Previous solution
409 vG, vR, vM, vu = TestFunctions(V) # Test functions
410

411 # Additional functions for solution storage
412 U_tot_save = Function(V)
413 u_save = Function(V_CG1)
414 U_tot_save_n = Function(V)
415

416 # Set initial conditions
417 u0 = Constant((0.0,0.0)) # Zero displacement
418 random.seed() # Set random seed
419 G_0 = Constant(0) # Initial GEF concentration
420 R_0 = Constant(0) # Initial RhoA concentration
421 M_0 = Constant(0) # Initial Myosin concentration
422

423 # Project initial conditions to appropriate function spaces
424 uG_n = project(G_0, V.sub(0).collapse())
425 uR_n = project(R_0, V.sub(1).collapse())
426 uM_n = project(M_0, V.sub(2).collapse())
427 u_n = project(u0, V.sub(3).collapse())
428

429 # Assign initial conditions to solution vector
430 assign(U_tot_n, [uG_n,uR_n,uM_n,u_n])
431

432 # Split solution for component access
433 uG,uR, uM, u = split(U_tot) # Current solution
434 uG_n, uR_n, uM_n, u_n = split(U_tot_n) # Previous solution
435

436 # Initialize arrays for storing results
437 time_array = []
438 strainEnergyLeft_vs_time = []
439 strainEnergyRight_vs_time = []
440 strainEnergyTotal_vs_time = []
441 boundary_curve_vs_time = []
442

443

444

445 # Main time stepping loop
446 while t <= T:
447 print("TIME = ", t)
448

449 # --------------------------------------------------------------------------------------
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450 # Set up tensors for continuum description of the cell layer
451 # --------------------------------------------------------------------------------------
452 # Define fundamental geometric tensors
453 I = Identity(2) # Identity tensor
454 F = I + grad(u) # Deformation gradient tensor
455 J_n = 1+tr(grad(u_n)) # Previous Jacobian (volume change)
456 J = 1+tr(grad(u)) # Current Jacobian
457 F_transpose = F.T # Transpose of deformation gradient
458 F_inv = I - grad(u) # Approximate inverse of deformation gradient
459 C = I - 2∗sym(grad(u)) # Right Cauchy-Green tensor
460 C1 = inv(C) # Inverse of Cauchy-Green tensor
461

462 # Calculate strain measures
463 eps_n = sym(grad(u_n)) # Previous strain tensor
464 eps = sym(grad(u)) # Current strain tensor
465 trace_n = tr(eps_n) # Previous volumetric strain
466 trace = tr(eps) # Current volumetric strain
467

468 # --------------------------------------------------------------------------------------
469 # Define active stresses from myosin activity
470 # --------------------------------------------------------------------------------------
471 # Calculate myosin-dependent active stress
472 activeStress_from_myosin = p[’sig_a_N’]∗ tanh(1∗uM) # Nonlinear myosin activation
473 # Convert to tensor form (isotropic active stress)
474 activeStress_tensor = activeStress_from_myosin∗as_tensor([[1, 0], [0, 1]])
475

476 # --------------------------------------------------------------------------------------
477 # Constitutive relations for viscoelastic material
478 # --------------------------------------------------------------------------------------
479 # Total Cauchy stress including active and passive components
480 CS = (activeStress_tensor + # Active stress
481 p[’lmbdaE_N’] ∗ tr(eps) ∗ Identity(2) + # Elastic volumetric
482 2∗p[’muE_N’]∗eps + # Elastic deviatoric
483 p[’tauc’]∗p[’lmbdaE_N’]∗(trace-trace_n)/dt∗Identity(2) + # Viscous volumetric
484 2∗p[’muE_N’]∗p[’tauc’]∗(eps-eps_n)/dt) # Viscous deviatoric
485

486 # Passive component of Cauchy stress
487 CS_passive = (p[’lmbdaE_N’] ∗ tr(eps) ∗ Identity(2) + # Elastic volumetric
488 2∗p[’muE_N’]∗eps + # Elastic deviatoric
489 p[’tauc’]∗p[’lmbdaE_N’]∗(trace-trace_n)/dt∗Identity(2) + # Viscous volumetric
490 2∗p[’muE_N’]∗p[’tauc’]∗(eps-eps_n)/dt) # Viscous deviatoric
491

492 # Calculate positive and negative parts for mechanochemical feedback
493 trace_positive = conditional(gt(trace,0),trace,0)∗non_opto_cell # Positive strain
494 trace_negative = conditional(gt(0,trace),trace,0)∗non_opto_cell # Negative strain
495 J_positive = conditional(gt(J-1,0),J-1,0)∗non_opto_cell # Positive volume change
496 detCS_positive = conditional(gt(0,det(CS_passive)),det(CS_passive),0) # Positive stress

determinant
497

498 # Calculate traction force
499 tF = kN∗u # Linear spring force
500 tF_mag = kN∗sqrt(inner(u,u)) # Magnitude of traction force
501 tF_mag_projected = project(tF_mag, K_DG0) # Project for visualization
502

503 # --------------------------------------------------------------------------------------
504 # Handle photoactivation event
505 # --------------------------------------------------------------------------------------
506 if t == t_opto:
507 # Initialize photoactivation pattern
508 G_0 = Constant(p[’alpha’])∗SquareCompartmentDoublet(1,5e-6/p[’length_scale’])
509

510 # Set and project new initial conditions after photoactivation
511 uG_n = project(G_0, V.sub(0).collapse())
512 uR_n = project(R_0, V.sub(1).collapse())
513 uM_n = project(M_0, V.sub(2).collapse())
514 u_n = project(u0, V.sub(3).collapse())
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515

516 # Update solution vector
517 assign(U_tot_n, [uG_n,uR_n,uM_n,u_n])
518 uG_n, uR_n, uM_n, u_n = split(U_tot_n)
519

520 # --------------------------------------------------------------------------------------
521 # Define mechanochemical feedback
522 # --------------------------------------------------------------------------------------
523 # Check cellularisation parameter
524 cellularisation = int(p[’cellularisation’])
525

526 # Calculate feedback based on positive strain in non-activated cells
527 if cellularisation:
528 feedback = p[’fb’]∗trace_positive∗non_opto_cell
529 else:
530 feedback = Constant(0)
531

532 # Disable feedback if feedback strength is small
533 if p[’fb’] < 0.01:
534 feedback = Constant(0)
535

536 # --------------------------------------------------------------------------------------
537 # Define reaction kinetics for signaling cascade
538 # --------------------------------------------------------------------------------------
539 # GEF activation/inactivation with mechanical feedback
540 React_G = -p[’lambda_decay’]∗uG + feedback
541 # RhoA activation by GEF
542 React_R = p[’b’]∗(uG - uR)
543 # Myosin activation by RhoA
544 React_M = p[’s’]∗(uR - uM)
545

546 # --------------------------------------------------------------------------------------
547 # Construct weak form of the coupled system
548 # --------------------------------------------------------------------------------------
549 # Reaction-diffusion equations with DG formulation
550 FcG = DGWeakFormRD(uG,uG_n,vG,p[’DG_N’],u,J,J_n,F,n,dx,dS,dSM,dt,cellularisation) -J∗(React_G)

∗vG∗dx
551 FcR = DGWeakFormRD(uR,uR_n,vR,p[’DR_N’],u,J,J_n,F,n,dx,dS,dSM,dt,cellularisation) -J∗(React_R)

∗vR∗dx
552 FcM = DGWeakFormRD(uM,uM_n,vM,p[’DM_N’],u,J,J_n,F,n,dx,dS,dSM,dt,cellularisation) -J∗(React_M)

∗vM∗dx
553

554 # Mechanical equilibrium equation
555 F_u = inner(CS,grad(vu))∗dx + kN∗inner(u,vu)∗dx
556

557 # Complete weak form
558 FWF = FcG + FcR + FcM + F_u
559

560 # --------------------------------------------------------------------------------------
561 # Configure and solve the nonlinear system
562 # --------------------------------------------------------------------------------------
563 # Set solver parameters for SNES (nonlinear solver)
564 snes_solver_parameters = {
565 "nonlinear_solver": "snes",
566 "snes_solver": {
567 "linear_solver": "lu", # Direct LU solver for linear system
568 ’absolute_tolerance’: 1e-6, # Convergence criteria
569 ’relative_tolerance’: 1e-6,
570 "maximum_iterations": 20, # Limit iteration count
571 "report": True, # Print convergence info
572 "error_on_nonconvergence": True
573 }
574 }
575

576 # Set up nonlinear variational problem
577 dFWF = derivative(FWF, U_tot, dU) # Calculate Jacobian
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578 problem = NonlinearVariationalProblem(FWF, U_tot, [], J=dFWF)
579 solver = NonlinearVariationalSolver(problem)
580 solver.parameters.update(snes_solver_parameters)
581 info(solver.parameters, False)
582

583 # Solve the system
584 (iter, converged) = solver.solve()
585

586

587

588

589 # --------------------------------------------------------------------------------------
590 # Prepare and save solution fields for visualization
591 # --------------------------------------------------------------------------------------
592 # Copy current solutions for post-processing
593 U_tot_save.assign(U_tot) # Current solution
594 U_tot_save_n.assign(U_tot_n) # Previous solution
595 _uG, _uR, _uM, _u = U_tot_save.split(deepcopy=True) # Split into components
596

597 # --------------------------------------------------------------------------------------
598 # Project solution fields onto appropriate function spaces
599 # --------------------------------------------------------------------------------------
600 # Vector fields (CG1 space)
601 disp.assign(project(_u, V_CG1)) # Displacement field
602 TractionF.assign(project(tF, V_CG1)) # Traction force
603

604 # Molecular species concentrations (DG0 space)
605 GEF.assign(project(_uG, K_DG0)) # GEF concentration
606 RhoA.assign(project(_uR, K_DG0)) # RhoA concentration
607 Myosin.assign(project(_uM, K_DG0)) # Myosin concentration
608

609 # Domain markers and geometric quantities (DG0 space)
610 activatedCell.assign(project(cell1, K_DG0)) # Activated cell region
611 nonOptoCells.assign(project(non_opto_cell, K_DG0)) # Non-photoactivated regions
612 pattern.assign(project(kN, K_DG0)) # Micropattern
613 Jacobian.assign(project(J, K_DG0)) # Volume change
614 JacobianPositive.assign(project(J_positive, K_DG0)) # Positive volume change
615 feedbackPositive.assign(project(feedback, K_DG0)) # Mechanical feedback
616

617 # Strain measures (DG0 space)
618 traceGreenLagrange.assign(project(trace, K_DG0)) # Volumetric strain
619 traceGreenLagrangePositive.assign(project(trace_positive, K_DG0)) # Positive strain
620 detCauchyStressPositive.assign(project(detCS_positive, K_DG0)) # Positive stress
621

622 # Stress and strain tensors (DG0 tensor space)
623 Cauchystress.assign(project(CS, W_DG0)) # Total Cauchy stress
624 Cauchystress_passive.assign(project(CS_passive, W_DG0)) # Passive stress
625 activeStress.assign(project(activeStress_tensor, W_DG0)) # Active stress
626 strainGreenLagrange.assign(project(eps, W_DG0)) # Strain tensor
627 defGrad_save.assign(project(F, W_DG0)) # Deformation gradient
628 CauchyGreenInverse_save.assign(project(C1, W_DG0)) # Inverse Cauchy-Green tensor
629

630 # --------------------------------------------------------------------------------------
631 # Write fields to XDMF file for visualization
632 # --------------------------------------------------------------------------------------
633 # Vector fields
634 xdmf_file.write(disp, t) # Displacement
635 xdmf_file.write(TractionF, t) # Traction
636

637 # Molecular concentrations
638 xdmf_file.write(GEF, t) # GEF
639 xdmf_file.write(RhoA, t) # RhoA
640 xdmf_file.write(Myosin, t) # Myosin
641

642 # Domain markers and geometric quantities
643 xdmf_file.write(activatedCell, t) # Activated cells
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644 xdmf_file.write(nonOptoCells, t) # Non-photoactivated cells
645 xdmf_file.write(pattern, t) # Micropattern
646 xdmf_file.write(Jacobian, t) # Volume change
647 xdmf_file.write(JacobianPositive, t) # Positive volume change
648 xdmf_file.write(feedbackPositive, t) # Mechanical feedback
649

650 # Strain measures
651 xdmf_file.write(traceGreenLagrange, t) # Total strain
652 xdmf_file.write(traceGreenLagrangePositive, t) # Positive strain
653 xdmf_file.write(detCauchyStressPositive, t) # Positive stress
654

655 # Stress and strain tensors
656 xdmf_file.write(Cauchystress, t) # Total stress
657 xdmf_file.write(Cauchystress_passive, t) # Passive stress
658 xdmf_file.write(activeStress, t) # Active stress
659 xdmf_file.write(strainGreenLagrange, t) # Strain tensor
660 xdmf_file.write(defGrad_save, t) # Deformation gradient
661 xdmf_file.write(CauchyGreenInverse_save, t) # Inverse Cauchy-Green
662

663 # --------------------------------------------------------------------------------------
664 # Calculate and store derived quantities
665 # --------------------------------------------------------------------------------------
666 # Store current time
667 time_array.append(t)
668

669 # Calculate strain energy in different regions
670 dx1 = Measure(’dx’, domain=mesh, subdomain_data=subdomains, subdomain_id=1)
671 strainEnergyLeft = calculateStrainEnergy(u, kN, dx1) # Left cell
672

673 dx2 = Measure(’dx’, domain=mesh, subdomain_data=subdomains, subdomain_id=2)
674 strainEnergyRight = calculateStrainEnergy(u, kN, dx2) # Right cell
675

676 strainEnergyTotal = calculateStrainEnergy(u, kN, dx) # Total system
677

678 # Extract boundary curve for shape analysis
679 boundary_curve = get_boundary_of_deformed_mesh(_u, geo_file_name)
680

681 # Store energy and boundary data
682 strainEnergyLeft_vs_time.append(strainEnergyLeft)
683 strainEnergyRight_vs_time.append(strainEnergyRight)
684 strainEnergyTotal_vs_time.append(strainEnergyTotal)
685 boundary_curve_vs_time.append(boundary_curve)
686

687 # --------------------------------------------------------------------------------------
688 # Update time step and solution
689 # --------------------------------------------------------------------------------------
690 t = t + DT # Increment time
691 U_tot_n.assign(U_tot) # Store current solution for next step
692

693 # --------------------------------------------------------------------------------------
694 # Save simulation data to files
695 # --------------------------------------------------------------------------------------
696 # Create dictionary of energy data
697 outputDict = {
698 ’time’: np.array(time_array),
699 ’strainEnergyLeft’: np.array(strainEnergyLeft_vs_time),
700 ’strainEnergyRight’: np.array(strainEnergyRight_vs_time),
701 ’strainEnergyTotal’: np.array(strainEnergyTotal_vs_time)
702 }
703

704 # Save energy data to CSV
705 pd.DataFrame.from_dict(data=outputDict).to_csv(path_to_rawData+’strainEnergy.csv’, header=True

)
706

707 # Save boundary curve data to NPZ file
708 np.savez(path_to_rawData + ’boundary_curve.npz’,
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709 boundary_curve=boundary_curve_vs_time,
710 time=np.array(time_array))
711

712 # Execute simulation if script is run directly
713 if __name__ == "__main__":
714 simulation()� �
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