# Modelling mechanochemical coupling in optogenetically activated cell layers Dennis Wörthmüller<sup>1</sup>, Falko Ziebert<sup>2,3</sup>, and Ulrich S. Schwarz<sup>2,3,\*</sup> <sup>1</sup>Institut Curie, PSL Research University, CNRS UMR 168, Paris, France <sup>2</sup>Institute for Theoretical Physics, Heidelberg University, Heidelberg, Germany <sup>3</sup>BioQuant–Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany In adherent cells, actomyosin contractility is regulated mainly by the RhoA signaling pathway, which can be controlled by optogenetics. To model the mechanochemical coupling in such systems, we introduce a finite element framework based on the discontinuous Galerkin method, which allows us to treat cell doublets, chains of cells and monolayers within the same conceptual framework. While the adherent cell layer is modeled as an actively contracting viscoelastic material on an elastic foundation, different models are considered for the Rho-pathway, starting with a simple linear chain that can be solved analytically and later including direct feedback that can be solved only numerically. Our model predicts signal propagation as a function of coupling strength and viscoelastic time scales and identifies the conditions for optimal cell responses and wave propagation. In general, it provides a systematic understanding of how biochemistry and mechanics simultaneously contribute to the communication of adherent cells. cell mechanics | optogenetics | signal propagation | mechanochemical coupling | finite element method \*Correspondence: schwarz@thphys.uni-heidelberg.de #### Introduction With the advent of mechanobiology, it has become clear that biochemistry and mechanics play an equally important role for the function of cellular systems (1, 2). For example, it has been shown that stem cells actively sense the stiffness of their environment, and that this mechanical input together with soluble factors determines their subsequent differentiation (3, 4). Later it has been shown that one important element is the transcription factor Yes-associated protein (YAP), which is activated on stiff substrates and in geometrical confinement (5, 6). A close coupling between biochemistry and mechanics also exists for multicellular systems. For example, it has been shown that in wound healing and infection, neighboring epithelial cells coordinate their activity by mechanical activation of extracellular signal-regulated kinases (ERK) (7, 8). A mathematical model demonstrated how wave propagation results from mutual feedback between mechanics and biochemistry: leader cells pull on their followers, ERK is activated in the followers and activates contractility, which leads to forces on the next row of followers (9, 10). A similar mechanism is also realized by the tumour suppressor protein merlin, which under mechanical force is relocalized from the cell-cell junctions to the cytoplasm (11). Interestingly, the mechanism for wave propagation is similar to the one for action potentials in the neurosciences. In principle, the signal could go both ways, but a refractory period in the sending part prevents the wave from going backwards. The general scheme of mechanochemical feedback leading to complex systems behaviour is even more evident for developing organisms (12, 13). Here morphogen concentration fields determine where cells grow and divide, and this leads to changes of the domain in which signaling is active, which in turn changes the way morphogens are secreted and distributed. Such feedback loops lead to non-linear systems dynamics which can explain the intricate patterns that emerge during tissue formation and embryogenesis (12). One prominent model organism is the fruit fly Drosophila, where experimental observations have been coupled with mathematical models (14, 15). Another one is the freshwater polyp Hydra, which is able to regenerate its patterning even after being cut in pieces (16–18). However, for such organismal systems it is very challenging to achieve a systems level understanding connecting molecular processes to the tissue scale. For mechanistic understanding, it is therefore rewarding to turn back to their elementary building blocks, the cells, and small assemblies of such cells, with the long term aim to upscale to larger systems. To understand the coupling of biochemistry and mechanics at the level of single cells, one must start with the actin cytoskeleton (19–21). This is a network of actin filaments and myosin II molecular motor proteins that determine the mechanical properties of cells, particularly during processes such as adhesion, migration, and division. Since the actin cytoskeleton continuously consumes energy in the form of adenosine triphosphate (ATP) to grow and reorganize its filaments, generating forces and flows in the process, the appropriate modeling approach is to introduce active stresses that are coupled to the chemical potential of the myosin II motors. This central concept led to the development of active gel theory (22, 23). Active gel theory is commonly used to model single-cell migration (24, 25), but can also be readily extended to larger systems, such as tissue flow (26). To incorporate more mechanistic details into the process of force generation by cells, one must also consider how it is regulated by the small GTPases from the Rho-family, including RhoA, Rac1 and Cdc42 (21, 27). Briefly, Rac1 and Cdc42 primarily regulate the assembly of larger protrusive actin structures, such as lamellipodia and filopodia, respectively, while RhoA is predominantly responsible for the formation of actomyosin contractility. The activity of these small GT-Pases is controlled by many different Guanine Exchange Fac- tors (GEFs). If such a GEF activates RhoA, this in turn activates Diaphanous-related formin (Dia) for actin polymerization and Rho-associated protein kinase (ROCK) for contractility through myosin II molecular motors (28). Together, these effects then lead to productive force generation. Several positive and negative feedback loops exist among these components, leading to complex temporal dynamics and pattern formation (21, 27). For instance, Bement et al. (29) identified an activator-inhibitor relationship between RhoA and F-actin, which results in the emergence of spiral contraction waves during cytokinesis in Xenopus embryonic cells. Similar surface contraction waves have been observed in starfish oocytes during maturation, modeled by the coupled reaction kinetics of actin and myosin II (30, 31). In a systematic study, by combining nonlinear system dynamics and experimental data, Kamps et al. (32) developed a detailed model for the reaction kinetics of GEF, RhoA, and myosin II. This model not only demonstrates the complexity of the RhoA pathway, but also successfully explains the experimental observations of pulsatile contractions in the actin cortex, identifying cytosolic GEFH1 as a crucial parameter for the emergence of this pulsatile behavior. While GEFs for the small GTPases from the Rho-family sometimes are activated purely by biochemical pathways, often their activation results from mechanical forces (33–35), similar to the cases of ERK (7, 9, 10) and merlin (11). Often, theoretical models incorporate these concepts by proposing feedback mechanisms between mechanical tension and biochemical signaling. For example, a positive biochemicalmechanical feedback loop between forces exerted on focal adhesions and RhoA signaling at these sites can explain spatial gradients in the periodic myosin- $\alpha$ -actinin pattern in stress fibers stimulated with calyculin A (36). Several mathematical studies combined simple models for Rho GTPase activity and cell mechanics to demonstrate that their interplay leads to complex cell behaviors (37, 38). The authors showed that their proposed system can exhibit bistability, where the two states represent permanently contracted or relaxed cells, and can also produce oscillatory states. Recently, Staddon et al. (39) coupled a basic activator-inhibitor reaction-diffusion system, comprising RhoA as the activator and myosin II as the inhibitor, with the mechanics of viscoelastic solids and fluids. In this model, the interplay between biochemistry, actomyosin contractility, and viscoelastic deformation leads to the emergence of propagating pulsatile contractions and topological turbulence in flows of RhoA. In order to dissect these signaling pathways experimentally, one usually works with inhibitors, which are small chemical molecules that reduce the effect of certain components like ROCK or myosin II. However, the concomitant results are often rather qualitative in nature and it is not always clear how well the inhibitor reaches its putative target. Recently, optogenetics has emerged as a powerful alternative, which leads to more quantitative results (40). In optogenetics, a light-sensitive construct is engineered into the cells and can then be activated with high temporal and spatial resolution. Among others, this approach has been applied in several studies for example to control neural activity (41), the regulation of gene expression (42, 43) or even to regulate engineered metabolic pathways in cells (44), which illustrates the versatility of this method. In the field of mechanobiology it has become an established technique to activate the Rho-pathway by recruiting a GEF to the membrane (31, 45–47), thus allowing for a precise spatiotemporal control of cytoskeletal dynamics of single cells (48) and multicellular systems (49, 50). The quantitative advances achieved by optogenetics now open the door for a more detailed mathematical modelling of the underlying processes. Different modelling frameworks have been applied before to couple biochemistry and mechanics. One attractive option is the cellular Potts model, which has been applied to both Rho/Rac-signaling (51) and EKR-signaling (7). However, the framework is not able to model active stresses in detail. Here we therefore turn to active continuum mechanics, which is the natural framework to describe local active stresses, as demonstrated by the success of active gel theory (22–26). For the signaling pathways, we rely on a description in terms of a system of reaction-diffusion equations (32) solved on a geometrical domain which represents a cell ensemble strongly adhered to an elastic foundation (48, 52, 53). Because both frameworks, continuum mechanics and reaction-diffusion systems, lead to partial differential equations (PDEs), we turn to the finite element method (FEM), which is a standard way to numerically solve PDEs. Because in addition we also aim for multicellular systems, we specifically implement the discontinuous Galerkin finite element method, because it offers a natural way to represent the discontinuities at the cell-cell boundaries in multicellular systems. Here we first lay the conceptual basis for such an approach and then present representative applications for mechanochemical pattern formation in multicellular systems controlled by optogenetics. The manuscript is structured as follows. First we will introduce the main concepts and equations, motivated by recent experiments on optogenetic activation of cell doublets (49). Our starting point is the observation that optogenetic activation of contractility in one cell triggers an active response in a neighboring cell, compare Fig. 1a. For Rho-activation, we start with a simple linear variant of the pathway, which is sufficient to describe the recent experiments. We then explore the consequences of this response, going from the cell doublet on a H-pattern to increasingly larger systems, namely cell chains and monolayers as commonly used in experiments (49, 50), compare Fig. 1b. Finally, we will demonstrate the generality of the simulation framework by addressing the case of a monolayer with a more dynamic model for the reaction kinetics of the Rho-pathway (32). #### Model **Coupling biochemistry and mechanics.** Our theoretical model is strongly motivated by recent experiments on cell doublets on a H-pattern whose contractility is activated in the left cell by Rho-optogenetics, such that one can follow the response of the right cell in quantitative detail (49). The for- Fig. 1. Mechanochemical coupling in different geometries. (a) Cells in contact with each other communicate through mechanochemical coupling. In the cell doublet, the optogenetically controlled contraction of the left cell induces an active contractile response in the right cell. (b) For spatial modelling, we specify adhesion geometries commonly used in experiments. We start with the cell doublet on an H-pattern and then continue to cell chains and cell monolayers. mulation of the model follows the central observation that actively generated stresses within the cell layer depend on the concentration of the downstream output of the RhoApathway. Assuming that sufficient amounts of actin filaments are generated by the Dia-leg, this is mainly the amount of active myosin II generated by the ROCK-leg of the pathway. The spatio-temporal distribution of actively generated stresses depends also on the reaction kinetics and diffusive properties of all upstream signalling proteins. The active stresses may then lead to deformation of the cell which directly feeds back to the reaction-diffusion system by generating advection terms and changing concentrations. Consequently, the spatiotemporal evolution of a signaling protein concentration $c_i(\mathbf{x},t)$ is described by a reaction-diffusionadvection equation on a two-dimensional time-dependent domain $\Omega(t)$ , $$\frac{\partial c_i}{\partial t} + \nabla \cdot (\mathbf{v}(\mathbf{x}, t)c_i) = \nabla \cdot (\mathbf{D}\nabla c_i) + R_{c_i}(t) , \quad (1)$$ where $\mathbf{D}$ denotes the two-dimensional diffusion tensor, $R_{c_i}$ the reaction kinetics and the index i represents a signaling protein in the RhoA pathway. Eq. (1) arises naturally by demanding local mass conservation on the time-dependent domain by following Reynold's transport theorem. It includes an advection term $\mathbf{v} \cdot \nabla c_i$ due to flows induced by contraction and expansion and an enrichment/dilution term $c_i \nabla \cdot \mathbf{v}$ due to local volume changes, where $\mathbf{v}(\mathbf{x},t)$ corresponds to the velocity of the deforming material. Hence, deformations naturally interfere with the spatiotemporal evolution of the protein concentrations. Eq. (1) is written in terms of spatial (Eulerian) coordinates $\mathbf{x}$ which is a convenient choice for the description of diffusion processes. However, the deformation of the cell domain is better treated in terms of referential (Lagrangian) coordinates $\hat{\mathbf{x}}$ . The two coordinate systems are related by the deformation field $\hat{\mathbf{u}}(\hat{\mathbf{x}},t)=\mathbf{x}(\hat{\mathbf{x}},t)-\hat{\mathbf{x}}$ . We use Piola's identity $\hat{J}\nabla\cdot\mathbf{a}=\hat{\nabla}\cdot(\hat{J}\hat{\mathbf{F}}^{-1}\hat{\mathbf{a}})$ , where $\mathbf{a}$ is an arbitrary vector field and $\hat{\mathbf{F}}=\partial\mathbf{x}/\partial\hat{\mathbf{x}}=\mathbf{I}+\hat{\nabla}\hat{\mathbf{u}}$ the deformation gradient tensor with $\hat{J}=\det(\hat{\mathbf{F}})$ , to pull Eq. (1) back to the reference configuration $\Omega_0$ and express it in terms of Lagrangian coordinates as $$\frac{\partial}{\partial t}(\hat{J}\hat{c}_i) - \hat{\nabla} \cdot (\hat{J}\mathbf{D}\hat{\mathbf{C}}^{-1}\hat{\nabla}\hat{c}_i) - \hat{J}R_{\hat{c}_i}(t) = 0.$$ (2) Here, $\hat{\nabla}$ denotes the derivative with respect to Lagrangian coordinates, $\mathbf{D} = D\mathbf{I}$ is assumed to be an isotropic tensor with scalar diffusivity D and $\hat{\mathbf{C}} = \hat{\mathbf{F}}^T \hat{\mathbf{F}}$ denotes the Cauchy-Green deformation tensor. The velocity of the material is absorbed into the time-derivative in the first term. For the details of this derivation we refer to the supporting information. From the first term in Eq. (2) we see that compression $(\partial_t \hat{J} < 0)$ and dilation $(\partial_t \hat{J} > 0)$ of the elastic domain effectively alters the reaction kinetics. Further, we see that the diffusion is impacted by local deformations and can become anisotropic. Following earlier work on cells as active materials, we describe the mechanics of the cell layer as a viscoelastic continuum with active stresses coupled to an elastic foundation (48, 52, 54, 55) (compare Fig. 2a). We further assume that the lateral extent of the cell layer is much larger than its average height $h_c$ . This allows to obtain a two-dimensional model by having conditions for plane-stresses within the elastic sheet. The force balance equation then reads $$\nabla \cdot \boldsymbol{\sigma} + \mathbf{f} = 0 \,, \tag{3}$$ where $\sigma$ is the two-dimensional in-plane Cauchy stress tensor and f denotes an externally applied two-dimensional body force. The two-dimensional stress tensor is obtained by averaging the three-dimensional stress tensor over the thickness of the cell layer. For the cell layer, we assume a linear viscoelastic constitutive relation of the solid (Kelvin-Voigt) type. Although cells are very dynamic and often are modelled by viscoelasticity of the fluid (Maxwell) type, especially in active gel theory (23), here we consider stably adhering cells that effectively behave as solids due to homeostatic mechanisms, including volume control. The Kelvin-Voigt law reads $$\sigma_{\rm p} = \left(1 + \tau_c \frac{\partial}{\partial t}\right) (\lambda \operatorname{tr}(\boldsymbol{\varepsilon}) \mathbf{I} + 2\mu \boldsymbol{\varepsilon}) ,$$ (4) where $\varepsilon = (\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathrm{T}})/2$ denotes the infinitesimal strain tensor and $\tau_c = \eta_c/E_c$ is the relaxation time defined by the ratio of viscosity $\eta_c$ and Young's modulus $E_c$ of the cell. Further, we introduce the two-dimensional Lamé coefficients as $$\lambda = \frac{\nu_c h_c E_c}{1 - \nu_c^2}, \quad \mu = \frac{h_c E_c}{2(1 + \nu_c)},$$ (5) where $\nu_c$ is the cellular Poisson's ratio. Actomyosin contractility is modeled by an active stress tensor $\sigma_a$ and the total cell stress is given by the sum of the passive and active contributions, $\sigma = \sigma_p + \sigma_a$ . The cell layer is coupled to an elastic substrate which can be thought of as a continuous layer of springs between the cell and a rigid substrate (52, 56). In particular, the elastic foundation can also describe an elastic substrate as commonly used in traction force microscopy. It is described by a local force per unit area $$\mathbf{f} = -Y\mathbf{u} \,, \tag{6}$$ where Y is the spring constant density ( $[Y] = N m^{-3}$ ) and u the displacement field of the cell layer. In case of a micropatterned surface, the spring constant density becomes position dependent and defines the adhesion geometry. Note that $\sigma$ measures stresses in the deformed configuration and is evaluated at spatial coordinates. This means that in order to express Eq. (3) in terms of referential coordinates one has to use the first Piola-Kirchhoff stress tensor $\hat{\mathbf{P}}$ . This distinction becomes important only in the limit of finite strains. In the limit of small strains, i.e. small deformation gradients, we can assume $|\hat{\nabla}\hat{u}| \ll 1$ and only consider terms up to linear order in $\hat{\nabla}\hat{u}$ for which we can approximate $\hat{\mathbf{F}}^{-1} \approx \mathbf{I} - \hat{\nabla}\hat{u}$ , $\hat{J} \approx$ $1 + \operatorname{tr}(\hat{\nabla}\hat{u})$ and $\hat{\mathbf{C}} = \mathbf{I} + \hat{\nabla}\hat{\mathbf{u}} + \hat{\nabla}\hat{\mathbf{u}}^{\mathsf{T}} + \mathcal{O}(|\hat{\nabla}\hat{\mathbf{u}}|^2) \approx \mathbf{I} + 2\varepsilon$ . Given this small strain assumption, the two tensors only differ in terms $\mathcal{O}(|\hat{\nabla}\hat{\mathbf{u}}|^2)$ , such that $\boldsymbol{\sigma} \approx \hat{\mathbf{P}}$ . We will use referential coordinates for the force balance and constitutive relation, respectively. The boundary of the cells is non-permeable for the signaling proteins and hence, we impose zero-flux boundary conditions at the interface between cell interior and cell exterior $\mathbf{j} \cdot \mathbf{N} = 0$ on $\partial \Omega_0$ with $\mathbf{j} = \hat{J} \mathbf{D} \hat{\mathbf{C}}^{-1} \hat{\nabla} \hat{c}_i$ being the diffusive flux. Besides ensuring mechanical integrity, an inherent feature of intercellular junctions, e.g. tight junctions, is to maintain compartmentalisation in tissues by acting as a barrier for fluids and solutes. Therefore also the cell-cell junctions are non-permeable, which is incorporated by imposing an internal zero-flux boundary condition on $\Gamma_{\text{CCJ}}$ . As no external stresses are applied at the boundary $\partial \Omega_0$ of the sheet, we have the boundary condition $\sigma \cdot \mathbf{N} = 0$ on $\partial \Omega_0$ . The net traction force exerted by the cell layer vanishes as $\int_{\Omega_0} Y \mathbf{u} \ d\Omega_0 = 0$ , as required for a closed system. In summary, the model can be formulated as follows: Find the displacement field $\mathbf{u}$ together with the concentrations $\hat{c}_i$ of the signaling species such that $$\nabla \cdot \boldsymbol{\sigma} = Y \mathbf{u} \text{ in } \Omega_0, \quad (7)$$ $$\frac{\partial}{\partial t}(\hat{J}\hat{c}_i) - \hat{\nabla} \cdot (\hat{J}\mathbf{D}\hat{\mathbf{C}}^{-1}\hat{\nabla}\hat{c}_i) - \hat{J}R_{\hat{c}_i}(t) = 0 \text{ in } \Omega_0, \quad \textbf{(8)}$$ together with the boundary conditions $$\boldsymbol{\sigma} \cdot \mathbf{N} = 0$$ on $\partial \Omega_0$ , (9) $$-\hat{J}\mathbf{D}\hat{\mathbf{C}}^{-1}\hat{\nabla}\hat{c}_i\cdot\mathbf{N} = 0 \text{ on } \partial\Omega_0,$$ (10) $$-\hat{J}\mathbf{D}\hat{\mathbf{C}}^{-1}\hat{\nabla}\hat{c}_i \cdot \mathbf{N}_{CCJ} = 0 \text{ on } \Gamma_{CCJ}.$$ (11) In addition to the geometrically arising coupling between the RD-system and mechanics as described by Eqs. (7, 8), we **Fig. 2.** Mechanochemical model for a cell doublet. (a) A cell doublet of thickness $h_c$ stably adheres to an elastic foundation via springs that are homogeneously distributed over the area defined by the H-shaped micropattern. The cell doublet (Young's modulus $E_c$ , viscosity $\eta_c$ ) is characterised by a cell-cell junction (red line; $\Gamma_{\rm CCJ}$ ) separating the two cells $(\Omega_l,\Omega_r)$ along the vertical symmetry axis of the micropattern (y-axis). The elastic properties of the cell are sketched in the inset. The elastic substrate is described via the spring stiffness density Y. (b) The simplest model for the signaling cascade is a linear chain in which mechanosensitivity leads to activation of the first signaling protein and the last signaling protein determines active stresses. All other signaling proteins experience a natural feedback resulting from deformation of the cell domain during contraction. introduce two additional coupling mechanisms as schematically illustrated in Fig. 2b. First, we couple the output of the RD-system, i.e. the concentration of the last signaling protein of the activation cascade $c_{\text{out}}$ , to active stresses $\sigma_{\text{a}}$ (red arrow in Fig. 2b). For this we relate $\hat{c}_{\text{out}}(\hat{\mathbf{x}},t)$ to $\sigma_{\text{a}}$ via a relation (39, 57) $$\sigma_{\rm a}(\hat{c}_{\rm out}) = \sigma_0 \tanh(S\hat{c}_{\rm out}) ,$$ (12) where $\sigma_0$ is the maximal contractile stress and S a parameter which controls how sensitive stress generation is. Since $tanh(x) \leq 1$ everywhere, we additionally ensure that active stresses are bound and hence avoid numerical instabilities. Second, we introduce mechanosensitivity by relating the mechanical perturbations to the activation of the most upstream signaling protein $\hat{c}_1$ in the reaction-diffusion system, see Fig. 2b (yellow arrow). In our model, the mechanical perturbation can either be force-related (measured in terms of internal stresses) or deformation-related (expressed in terms of strain or compression/stretch). From the perspective of continuum mechanics, these measures are provided by the Cauchy stress tensor $\sigma$ and the Cauchy strain tensor $\varepsilon$ (or the deformation gradient tensor F). To make this coupling independent of the frame of reference, for each of the different measures we can choose between two tensor invariants (for a 2D system), the trace or the determinant (58). Motivated by experimental studies in a strain-controlled experimental setup, showing that cells respond directly to stretch (59), we decide to introduce a strain-dependent feedback. Without specifying a specific RD-system, we assume an activation rate of the first signaling protein due to passive strains via a source term of the form $$\partial_t \hat{c}_1 = a_{c_1} \operatorname{tr}^+(\boldsymbol{\varepsilon}) ,$$ (13) where $a_{c_1}$ is a generic activation rate which might depend on other quantities depending on the specific choice for the RD-system (similar to Hino et al. (7)). The plus sign indicates that coupling is only present in regions of positive strains, i.e. $\operatorname{tr}^+(\varepsilon) := \max(0,\operatorname{tr}(\varepsilon))$ . We want to emphasize that the magnitude of $a_{c_1}$ has to be chosen such that if multiplied by $tr^+(\varepsilon)$ it results in an appropriate rate for the strain-dependent feedback. Simple model for the Rho-pathway with optogenetic activation. Although the RhoA-pathway allows for complex dynamics, earlier work has shown that at least in cells with strong adhesion, the actin cytoskeleton is regulated in the vicinity of a stable fixed point of this pathway (48, 49). One aspect could be that strongly adherent cells exhibit dominant stress fibers. Since stress fibers are highly organized structures, it is plausible to assume a differently organized reaction-diffusion system than for e.g. the homogeneous actin cortex in egg cells (29). Indeed it has been shown recently that different organizations of the actin cytoskeleton lead to different activation and relaxation times in the Rho-pathway (48). Another aspect might be the observation that the stability of the RhoA-pathway has a strong dependence on the total GEF-concentration (32). This suggests that the total GEF expression levels, which are naturally elevated in cells transfected with an optogentic construct, render their RhoA-system more stable. Since cells transfected with the CRY2/CIBN system show a significantly higher baseline contractility, we assume that this might correspond to the stable branch of high GEF-concentrations (32). First, we want to focus on this regime and describe optogenetic activation as a reversible process such that after activation cells eventually go back to their homeostatic contractility level without showing any significant oscillatory or excitable behavior upon photoactivation. Excitability is therefore completely controlled by the recruitment of a GEF to the membrane and can be scaled by the duration of the activation light pulse until saturation sets in (45, 46). Motivated by these observations, we first assume a linear input-output relationship between GEF plasma membrane recruitment and myosin II induced contractility. This assumption not only reduces the number of unknown parameters, it also allows for an analytical solution of the homogeneous system, such that it can be fully understood. Our proposed RhoA-myosin reaction scheme is shown in Fig. 3a. GEF activity enters implicitly through a predefined input signal which we describe by a function $$g(t) = g_{\rm ss} + g_{\rm a} e^{-\lambda (t - t_{\rm act})} H(t - t_{\rm act}) = g_{\rm ss} + \delta g(t)$$ . (14) Here $g_{ss}$ represents a normalized steady-state GEF concentration (fraction of active GEF, for $t \leq t_{act}$ ). After an abrupt light-mediated increase of concentration $g_a$ at $t = t_{act}$ (where H(t) is the Heaviside function), the time course of GEF concentration for $t > t_{act}$ follows a decaying exponential. This input signal consequently triggers a reaction cascade by activating RhoA which in turn activates myosin II. All reactions are modeled by a law of mass action with positive valued activation rate constants a and k. Further we assume that all active components deactivate spontaneously described by the positive valued rate constants b and s and we express the Fig. 3. Simple model for the RhoA-pathway. (a) Optogenetic activation of strongly adherent cells often results in a homeostatic response, which is described best by a weakly activated linear signaling cascade. For weak perturbations, the strength of the output signal scales linearly with strength of the input signal. (b) Time course of the normalized concentration perturbations of active RhoA (blue) and myosin (red) after rapid increase of GEF concentration (black) upon photoactivation at $t = t_{act}$ . The dashed line represents a sigmoidal fit to the increasing edge of the myosin concentration in order to estimate the time scale of the increase $au_{\delta \tilde{m}} pprox 11 \, \mathrm{s}.$ The inset shows the time evolution of the full system of ODEs in the phase-plane. The green line displays the evolution into the only stable fixed point of the system. Two perturbations for $\alpha=2$ (gray) and $\alpha=4$ (black) are shown and demonstrate the linearity and scalability of the system. reaction kinetics as $$\frac{\mathrm{d}R}{\mathrm{d}t} = ag(t)(R_T - R) - bR$$ $$\frac{\mathrm{d}M}{\mathrm{d}t} = \tilde{k}R(M_T - M) - sM$$ (15) $$\frac{\mathrm{d}M}{\mathrm{d}t} = \tilde{k}R(M_T - M) - sM \tag{16}$$ where for brevity we write $R_a \equiv R$ and $M_a \equiv M$ . Here we additionally assume that the total amount of each signaling component is conserved on the studied time scale, such that concentrations of the inactive species $R_i$ and $M_i$ are given by the difference of the total concentration and the active concentration $R_i = R_T - R$ and $M_i = M_T - M$ . Another simplification is made by considering the limit of a weakly activated signaling cascade (60) for which $R_T - R \approx R_T$ and $M_T - M \approx M_T$ such that the system can be written as $$\frac{\mathrm{d}r}{\mathrm{d}t} = ag(t) - br \;, \quad \frac{\mathrm{d}m}{\mathrm{d}t} = kr - sm \;, \tag{17}$$ where we divided by the total concentration and hence set r = $R/R_T$ , $m = M/M_T$ and $k = kR_T$ . Before photoactivation $(t \le t_{\rm act})$ we have $\delta g(t) = 0$ and in this case obtain the stadystate concentrations for RhoA and myosin as $$r_{\rm ss} = \frac{ag_{\rm ss}}{b}$$ , $m_{\rm ss} = \frac{ak}{bs}g_{\rm ss}$ . (18) The time evolution after perturbation $(t > t_{act})$ may generally be written as $$r(t) = r_{ss} + \delta r(t)$$ , $m(t) = m_{ss} + \delta m(t)$ , (19) where $\delta r(t)$ and $\delta m(t)$ denote the time-dependent perturbations of the steady state. Together with Eq. (17) we end up with the time evolution of the perturbation which is given by $$\frac{\mathrm{d}\delta r}{\mathrm{d}t} = a\delta g(t) - b\delta r \;, \quad \frac{\mathrm{d}\delta m}{\mathrm{d}t} = k\delta r - s\delta m \;. \tag{20}$$ In experiments one usually quantifies the relative activity increase with respect to the activity baseline. We therefore normalize the perturbation with respect to the steady state concentrations and obtain $$\frac{\mathrm{d}\delta\tilde{r}}{\mathrm{d}t} = b(\delta\tilde{g}(t) - \delta\tilde{r}) \;, \quad \frac{\mathrm{d}\delta\tilde{m}}{\mathrm{d}t} = s(\delta\tilde{r} - \delta\tilde{m}) \;, \tag{21}$$ with $\delta \tilde{g}(t) = \delta g(t)/g_{\rm ss}$ The strength and time course of the relative RhoA and myosin perturbations is controlled by the two deactivation rates b and s as well as the strength of the input signal $\alpha \equiv g_{\rm a}/g_{\rm ss}$ and its decay rate $\lambda$ . For the parametrization of this linearized model we refer the reader to the supplementary text. This system of equations Eq. (21) can be solved analytically for a spatially homogeneous system (solution given in supplemental text). Typical time courses of the perturbations are shown in Fig. 3b, where the inset displays the time evolution of Eq. (17). #### Results Optogenetic activation of a cell doublet. We start by simulating the cell doublet, cf. Fig. 2, with linear Rho-signaling as shown in Fig. 3. The corresponding computer code is documented in the supplemental text and the mechanical equations are parametrized according to Table S3. We keep all parameters fixed, except the strength of the strain-dependent feedback $a_{\delta \tilde{q}}$ and the viscoelastic time scale $\tau_c$ . Since we are mainly interested in the response to the perturbation, we omit baseline contractility, i.e. we do not consider a strain in the cell layer before activation. The reference shape was chosen to resemble the typical reference shape of a maturely adherent cell doublet with a vertical oriented cell-cell junction across the symmetry center of the pattern and two pronounced invaginated arcs spanning between the vertical bars of the H-shaped micropattern (49). The cells are assumed to contract isotropically with $\sigma_a = \sigma_a(\delta \tilde{m})\mathbf{I}$ . We optogenetically activate the left cell $\Omega_l$ at time $t=t_{\rm act}$ , compare Fig. 4a. The time evolution of the GEF-perturbation for $t \geq t_{\rm act}$ is given by $$\frac{\mathrm{d}\delta\tilde{g}}{\mathrm{d}t} = -\lambda\delta\tilde{g} + a_{\delta\tilde{g}}\operatorname{tr}^{+}(\varepsilon)\mathbf{1}_{\Omega_{r}}(x), \qquad (22)$$ where we include the strain dependent feedback in the right cell via the indicator function $\mathbf{1}_{\Omega_r}(x)$ with $\mathbf{1}_{\Omega_r}(x)=1$ if $x\in\Omega_r$ and $\mathbf{1}_{\Omega_r}(x)=0$ otherwise. This means that the strain-dependent feedback is only active in the right cell $\Omega_r$ . Having a feedback mechanism in the left cell we can expect nontrivial temporal behavior if positive passive strains build up in the left cell. The optogenetic activation at $t_{\rm act} = 5 \, {\rm s}$ is achieved by setting $\delta \tilde{g}(t_{\rm act}) = \alpha$ . This time point is shown in Fig. 4a with **Fig. 4.** Simulation of the optogenetic activation of a cell doublet. (a) Activated region (in black) and the GEF perturbation $\delta \tilde{g}(t_{\rm act})=2$ at $t_{\rm act}=5\,{\rm s}$ . In accordance with experiments, only a fraction of the left cell is illuminated in order to avoid illumination of the right cell. (b) Coupling measure ${\rm tr}\, {\rm e}$ in the non-activated cell (right cell) which reaches its maximal value of approx. $5\cdot 10^{-3}$ after $20\,{\rm s}$ . (c) Myosin concentration $\delta \tilde{m}$ around the time of maximal strain energy. (d) Frobenius norm of the resulting Cauchy stress. The parameters for this simulation can be found in Tables S2 and S3. Further we used $a_{\delta \tilde{g}} = 100\,{\rm s}^{-1}$ , $\tau_c = 10\,{\rm s}$ , S = 1 and time step $\Delta t = 0.5\,{\rm s}$ . Full time sequence shown as Movie S1. Weak coupling shown as Movie S2. a 100% increase ( $\alpha = 2$ ) of the steady-state GEF concentration upon photoactivation. This GEF perturbation triggers the RhoA-pathway which leads to active contraction in the activated left cell. As contraction in the left cell progresses, passive positive strains are generated in the right cell as it is stretched (Fig. 4b). This stretch leads to activation of GEF and hence triggers a contractile response in the right cell. Fig. 4c and d show the active myosin in both cells as well as the Frobenius norm of the resulting Cauchy stress $||\sigma||_F = \sqrt{\sum_{i,j=1}^2 |\sigma_{ij}|^2}$ , respectively, for a case where parameters are chosen such that both cells deform approximately symmetrically. We note that the active myosin pattern closely follows the pattern of passive strains in the right cell with concentration peaks near the cell periphery at the cellcell junction. Looking at the stress pattern, we further notice that the left cell contracts stronger than the right cell. However, the invaginated arc remains fairly symmetrical. This demonstrates that a visually symmetrical contraction can occur even when both cells do not contract equally strongly, but at different locations within the cell. Here the left cell generates active stresses mainly near the vertical bar of the H-pattern, while the right cell generates active stresses more near the periphery. To investigate these observations further we define different measures in order to understand the input-output relation between the left and right cell and to quantify the efficiency of the coupling. One way to quantify this is to measure the strain-energy $U_s$ transfered to the substrate $$U_{s,i} = \frac{1}{2} \int_{\Omega_{0,i}} Y(x) \mathbf{u}^2 d\Omega_{0,i} , \quad i \in \{l,r\}$$ (23) and compare the strain energy deposited on the left and right Fig. 5. Mechanochemical coupling in cell doublets. (a) One measure for the asymmetry of the process is monitoring the deposited strain energies $U_s$ in the left and right halves of the micropattern, respectively. Another measure is monitoring shape changes through asymmetry A, which follows from the integrals under the left and right halves of the contour. (b) Cell shapes in simulations with weak and strong active coupling. Stronger coupling may lead to visually symmetric contraction. Black line represents contour shape at last time step. (c) Effects of weak and strong coupling in terms of strain energy as a function of time. Strain energy curves were normalized with respect to the maximum of the total strain energy curve. (d) Same for shape asymmetry. (e) Efficiency of the coupling defined by the ratio of the relative maxima $U_{s,t}^{max}/U_{s,tot}^{max}$ for the left vs. $U_{r,t}^{max}/U_{s,tot}^{max}$ for the right cell, for different combinations of the free parameters, namely coupling strength $a_{\delta \tilde{g}}$ and viscoelastic time scale $\tau_c$ . For sufficiently large coupling one sees optimal coupling if the viscoelastic time scale corresponds to the time scale of the linear activation cascade. parts of the pattern (Fig. 5a (left)). Another way is to measure the asymmetry A of the contraction by quantifying the shape of the contour y(x) with respect to the symmetry axis of the pattern and the inward displacement of the cell contour (Fig. 5a (right)) $$A = \frac{I_l - I_r}{I} \,, \tag{24}$$ with $$I_i = \int_{\Omega_{r,i}} y(x) dx$$ , $i \in \{l, r\}$ . In Fig. 5b we show the shape of the invaginated arc throughout the whole contraction process. This demonstrates that the symmetry of the contraction is strongly shaped by the coupling described by the rate $a_{\delta \tilde{g}}$ . For a stronger coupling (large value of $a_{\delta \tilde{g}}$ ) the cell doublet contracts visually symmetrically in comparison to a weaker coupling (small value of $a_{\delta \tilde{g}}$ ), where invagination of the contour is clearly asymmetric and tends towards the activated cell. In Fig. 5c we show the normalized strain energy $U_s$ as a function of time, where each strain energy is normalized with respect to the maximal total strain energy $U_{s,tot}$ . We observe that the time course of the total strain energy is only slightly changed by the coupling strength $a_{\delta \tilde{q}}$ . In the case of weak coupling more than 90% of the deposited strain energy is generated by the left cell and the right cell remains almost completely passive. Note that even for $a_{\delta \tilde{q}} = 0$ the strain energy on the right hand side of the pattern is expected to be non-zero due to passive deformations by pulling of the left cell. In case of a strong coupling the right cell shows an active response and significantly contributes to the overall generated strain energy. These observations are confirmed by a quantification of the contour deformation as a function of time. For the weak coupling the contour remains strongly asymmetric throughout the majority of the simulation time. For the strong coupling asymmetry is only present for small times until the right cell actively pulls back and symmetrizes the periphery (Fig. 5d). Until now we only altered the rate $a_{\delta \tilde{g}}$ and kept the viscoelastic time scale $\tau_c$ constant. We next addressed the question of how the viscoelastic properties of the cell influence the efficiency of the coupling and therefore simulated several combinations of $a_{\delta \tilde{g}}$ and $\tau_c$ by varying both parameters over several orders of magnitudes. We consider the coupling to be efficient, if the ratio $U_{r,l}^{max}/U_{s,tot}^{max}$ is high. The results are displayed in Fig. 5e. For both quantifications we find that coupling efficiency is positively correlated with the coupling strength $a_{\delta \tilde{q}}$ . As a function of the viscoelastic time scale we notice that coupling efficiency increases with an increasing viscoelastic time scale, reaches an optimum around intermediate values and decreases again for larger values of of $\tau_c$ . The optimal value for $\tau_c$ is found to be at $\tau_c = 10$ s, which is in the same order of magnitude as experimentally measured values (48, 61). A sigmoidal fit to the time course of the myosin concentration (Fig. 3b) yields a time scale of $\tau_{\delta \tilde{m}} \approx 11 \, \mathrm{s}$ similar to the viscoelastic time scale. This result suggests that for an efficient mechanochemical coupling the viscoelastic time scale, i.e. the time scale at which the cell can react to mechanical stimuli, has to be in tune with the time scale at which the full linear cascade can react to those. In case of very large $au_c$ the left cell cannot deform sufficiently to trigger a response in the right cell. For small values of $\tau_c$ the right cell starts to counteract deformations quickly and does not remain in a stretched state for a sufficiently long time to allow the coupling mechanism to unfold its action. Optogenetically stimulated contraction wave in a chain of cells. Having established a framework for the mechanochemical interplay of two cells, we can generalize to more cells, for example a chain of cells on a micropatterned line (compare Fig. 1b). It is the strength of our discontinuous Galerkin approach that now such simulations are easy to implement and very efficient. The cell chain is realized computationally by connecting equally sized cells along the xaxis. Each cell now adheres in a homogeneous fashion to an elastic substrate. In contrast to the doublet, we here include a mechanochemical coupling also for the activated cell, thus we allow for the possibility that a wave is reflected at the right and comes back to the left. To model that many cell types tend to polarize when placed on lines, we use a unidirectional active stress tensor such that cells only contract in longitudinal direction of the line of cells $\sigma_a = \sigma_a(\delta \tilde{m})(\mathbf{e}_x \otimes \mathbf{e}_x)$ . All parameters used in the simulation are given in Tables S2 and We now activate the left cell at $t = t_{act}$ . The time evolution of the GEF-concentration for $t > t_{act}$ is then described by $$\frac{\mathrm{d}\delta\tilde{g}}{\mathrm{d}t} = -\lambda\delta\tilde{g} + a_{\delta\tilde{g}}\operatorname{tr}^{+}(\varepsilon). \tag{25}$$ As for the previous study of the cell doublet, we again vary the parameters $\tau_c$ and $a_{\delta \tilde{g}}$ to investigate the response of the system. Depending on parameters, we now observe three different responses: (1) non-transmissive (the stimulus dies out); (2) transmissive wave propagation, i.e. the most right cell is activated once; and (3) oscillatory waves going persistently through the system. Fig. 6a depicts the displacement field for the different states. Note that the displacement field is directly correlated with the generated traction forces through $\mathbf{T} = Y\mathbf{u}$ . In the case of a non-transmissive parameter regime, i.e. for small $a_{\delta\tilde{g}}$ , the contraction signal strongly decays during propagation from cell 1 (left) to cell 5 (right) and no substantial traction forces are generated at the right end of the line of cells, see Fig. 6a on the left. This observation has been quantified by comparing the substrate strain energies generated by cell 1 and 5 as a function of time, see Fig. 6b on the left. With increasing values of $a_{\delta \tilde{g}}$ , the transmission of the signal becomes more and more efficient and the active response of cell 5 comparable to cell 1, see the middle panels of Fig. 6a and b. Whether the signal transmission is effective or not depends on the context; here we decided to call the system transmissive if $U_s^{\max,5} > 0.1 U_s^{\max,1}$ . Finally, varying also the viscoelastic time scale of the system, we observe persistent oscillatory states in the parameter regime of sufficiently large $a_{\delta \tilde{g}}$ and $\tau_c$ , see the right panels of Fig. 6a and b. The frequency of the oscillations depends strongly on the combination of $a_{\delta \tilde{g}}$ and $\tau_c$ and can be further classified into burst-like oscillations and contractile oscillations. The former correspond to large variations in strain energy, while the latter relate to small fluctuations around an elevated increased strain energy plateau (see Fig. S2). Fig. 6c shows the phase diagram as a function of the coupling strength and the viscoelastic time scale. For a strongly coupled system (i.e. sufficiently large $a_{\delta \tilde{g}}$ ), the transition between transmissive and oscillatory states occurs around $\tau_c \approx 10\,\mathrm{s}$ , which again coincides with the time scale of the myosin relaxation. The number of cells in the line is also relevant for the signal transmission. Fig. 6d shows that the transition from non-transmissive to transmissive mechanochemical signaling needs larger values of $a_{\delta \tilde{g}}$ when increasing the length of the cell chain. This emphasizes that mechanochemical signaling tends to be of dissipative nature, and hence a cell can reach out only to a limited number of other cells, except if a strong amplification exists, like in action potentials. Cell monolayer with non-linear Rho-pathway. We finally turn to a cell monolayer (compare Fig. 1b). Again the numerical implementation is relatively easy given our discontinuous Galerkin approach and we demonstrate this here for 28 hexagonally arranged cells. In contrast to the cell doublet on a H-pattern and the line of cells, we now cannot assume anymore that the cells in the layer are polarized. This also implies that the simple linear chain model for the Rhopathway might not be sufficient anymore and that more complex dynamics might arise. We therefore now use the full non-linear model for the Rho-pathway as established earlier by Kamps et al. (32). The corresponding kinetic equations are given in Eqs. (S29-S31) (supplemental text). As investigated in Kamps et al. (32), they exhibit Turing-type instabilities resulting from fast (inactive) and slow (active) diffusing Fig. 6. Mechanochemical coupling in a chain of cells. (a) Kymographs of the substrate displacement field normalized to the maximal displacement for five cells in a row and for three different conditions. At $t=5\,\mathrm{s}$ cell 1 (left) is activated (blue bar). The contraction of the activated cell initiates a contraction wave propagating from cell 1 (left) to cell 5 (right). Depending on the parameters we observe non-transmissive (N), transmissive (T) or oscillatory states (O). For sufficiently large strain-dependent feedback $a_{\delta\bar{g}}$ and sufficiently large viscoelastic time scale $\tau_c$ , self-sustained oscillations emerge. (b) Time evolution of the strain energy for the activated cell 1 and cell 5, i.e. the last cell of the line, corresponding to the kymographs given in (a). (c) Phase diagram as a function of activation strength and viscoelastic times scale. Strong coupling and large viscoelastic times are required for oscillations. (d) Effect of cell number. The transition from non-transmissive occurs at larger values of $a_{\delta\bar{g}}$ with increasing length of the cell chain (error bars highlight discrete parameter sampling). A full simulation is given as Movie S3. species paired with positive and negative feedback loops of activator-inhibitor type. Here we have chosen the parameters for the RD-system such that traveling waves can form. The cell monolayer is shown in Fig. 7a with intercellular junctions shown in red and the color code depicting the levels of active stress/active myosin. The cell in the middle on the left hand side of the monolayer was activated by inducing an instability through small random fluctuations in the GEF-and RhoA-concentrations (the same effect can be obtained by optogenetic activation, but for the non-linear model, the exact mode of activation is less relevant). Several distinct contraction peaks form and the induced deformations slowly activate the RhoA-pathway and allow the active stresses to spread through the tissue, as indicated by the white arrows in Fig. 7a. The initially weak and rather uniform contractions eventually turn into strong and more localized traveling contraction waves, see Fig. 7b, until the whole monolayer is strongly activated, see Fig. 7c. For longer times, a dynamic steady state is reached, where the deformations are most prominent near the free edges, see Fig. 7d. #### **Discussion and Conclusion** Here we have shown that the discontinuous Galerkin (DG) finite element method (FEM) is ideally suited to model mechanochemical coupling in cell layers. Because both the Fig. 7. Mechanochemical coupling in a cell monolayer with a non-linear model for the Rho-pathway. (a) Total stress in the tissue shortly after inducing a spatio-temporal contraction pattern in the centered cell on the left side of the tissue. This initial perturbation spreads by means of the mechanochemical feedback through the tissue (white arrows). (b) and (c) Tissue at a later stage, where the initially small perturbations have developed into substantial contraction waves in each of the cells. (d) After transient dynamics, prominent deformations are visible in the free edges of the cell layer (white arrow and inset). Parameters can be found in Table S1 and Table S5. Full dynamics shown as Movie S4. reaction-diffusion (RD) and the continuum mechanical models lead to partial differential equations (PDEs), finite elements are the natural approach to couple them in a numerically efficient framework. The DG method in addition is ideal to include cell boundaries while still keeping the continuous nature of the PDEs. Our approach is very general both in terms of biochemistry (as exemplified by the linear regulation cascade versus the fully nonlinear reaction-diffusion system) and the material law (here a linear Kelvin-Voigt-type material). Motivated by the homeostatic nature of adherent cell layers, it is however centered on elastic systems. For flowing systems, which are typically modeled with active gel theory (22–26), one had to switch from the Lagrangian to the Eulerian framework. We benchmarked our approach by investigating in detail the optogenetic activation of a cell doublet on a H-shaped micropattern, as recently studied experimentally in Ref. (49). We then exemplified the scalability by looking at force and signal transmission via contraction waves in chains of cells, similar to recent experiments on optogenetic activation of cell trains (50). In these two cases, cell-matrix adhesion is very strong and cells tend to be homeostatic, which means that they return to baseline after optogenetic stimulation (48). Therefore we used the simple model of a linear chain for the Rho-signaling pathway. We finally addressed the case of mechanochemically excitable monolayers, which are known to develop more complex dynamic patterns, possibly because cell-cell adhesion dominates and cells are less polarized. In particular, experiments have found that wave propagation is rather common in such systems (7, 9, 10). In this case, we therefore used a more comprehensive and non-linear model for the Rho-pathway (32). In all of these cases, we identified conditions under which mechanochemical signaling leads to strong propagation of the signal from one cell to the other, and even to wave propagation. We find that force transmission is best when the viscoelastic time scale of the cell and the time scale of relaxation of the Rho-pathway after activation are of the same order. For the cell doublet, we used the coupling to an elastic foundation as a readout of the mechanical coupling of the two neighboring cells, in addition to the asymmetry in shape. In the future, the coupling to the elastic foundation could be replaced by a continuum substrate; then one could also model the effect of mechanical cell-cell communication through the substrate, which would be a natural extension of our approach. On the biochemical side, it would be interesting to go beyond modelling of the Rho-pathway and also include the effect of other known signaling molecules, including Rac/Cdc42, ERK and merlin. The numerical DG FEM framework established here now opens the door to quickly explore the effect of such pathways, and thus to establish a multiscale modeling framework that connects molecular processes to effective systems behavior. #### **Acknowledgments** U.S.S. wishes to express his gratitude to Erich Sackmann for many inspiring discussions on the physics of cells. D.W. and U.S.S. acknowledge funding through the DFG (Deutsche Forschungsgemeinschaft) grant MechanoSwitch SCHW 834/2-1. F.Z. and U.S.S. were supported by the cluster of excellence STRUCTURES funded by the DFG (EXC 2181/1 - 390900948). D.W. received funding from a European Research Council (ERC) grant ERC-SyG 101071793, awarded to Pierre Sens. #### **Author Contributions** All authors designed the research together. D.W. performed the research. F.Z. and U.S.S. supervised the project. D.W. and U.S.S. wrote the original draft of the paper. All authors reviewed and approved the paper. #### **Declaration of interests** The authors declare no competing interests. #### **Bibliography** - 1. Thomas Iskratsch, Haguy Wolfenson, and Michael P Sheetz. Appreciating force and shape—the rise of mechanotransduction in cell biology. Nature reviews Molecular cell biology, 15(12):825-833, 2014. - Erich Sackmann and Ana-Sunčana Smith. Physics of cell adhesion: some lessons from cell-mimetic systems. Soft matter, 10(11):1644-1659, 2014 - 3. Adam J Engler, Shamik Sen, H Lee Sweeney, and Dennis E Discher, Matrix elasticity directs stem cell lineage specification. Cell, 126(4):677-689, 2006 - Jessica H. Wen, Ludovic G. Vincent, Alexander Fuhrmann, Yu Suk Choi, Kolin C. Hribar Hermes Taylor-Weiner, Shaochen Chen, and Adam J. Engler. Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nature Materials. 13(10):979-987. October 2014. ISSN 1476-1122. doi: 10.1038/nmat4051. - Sirio Dupont, Leonardo Morsut, Mariaceleste Aragona, Elena Enzo, Stefano Giulitti, Michelangelo Cordenonsi, Francesca Zanconato, Jimmy Le Digabel, Mattia Forcato, Silvio Bicciato, Nicola Elvassore, and Stefano Piccolo. Role of YAP/TAZ in mechanotransduction Nature, 474(7350):179-183, June 2011, ISSN 0028-0836, doi: 10.1038/nature10137. - 6. Alberto Elosegui-Artola, Ion Andreu, Amy EM Beedle, Ainhoa Lezamiz, Marina Uroz, Anita J Kosmalska, Roger Oria, Jenny Z Kechagia, Palma Rico-Lastres, Anabel-Lise Le Roux, et al. Force triggers yap nuclear entry by regulating transport across nuclear pores. Cell, 171(6): 1397-1410, 2017. - Naoya Hino, Leone Rossetti, Ariadna Marín-Llauradó, Kazuhiro Aoki, Xavier Trepat, Michiyuki Matsuda, and Tsuyoshi Hirashima. Erk-mediated mechanochemical waves direct collective cell polarization. Developmental cell, 53(6):646-660, 2020. - Lara Hundsdorfer, Marie Muenkel, Raul Aparicio-Yuste, Julio Cesar Sanchez-Rendon, Maria Jose Gomez-Benito, Aylin Balmes, Tilman E Schäffer, Ana Velic, Yi-Ting Yeh, Iordania Constantinou, et al. Erk activation waves coordinate mechanical cell competition leading to collective elimination via extrusion of bacterially infected cells. Cell reports, 44 (1), 2025. - Daniel Boocock, Naoya Hino, Natalia Ruzickova, Tsuyoshi Hirashima, and Edouard Hannezo. Theory of mechanochemical patterning and optimal migration in cell monolayers Nature physics, 17(2):267-274, 2021 - Daniel Boocock, Tsuyoshi Hirashima, and Edouard Hannezo. mechanochemical patterning and glassy dynamics in cellular monolayers. PRX Life, 1(1): - 11. Tamal Das, Kai Safferling, Sebastian Rausch, Niels Grabe, Heike Boehm, and Joachim P Spatz. A molecular mechanotransduction pathway regulates collective migration of epithelial cells. Nature cell biology, 17(3):276-287, 2015. - Carl-Philipp Heisenberg and Yohanns Bellaïche. Forces in tissue morphogenesis and patterning. Cell, 153(5):948-962, 2013. - Edouard Hannezo and Carl-Philipp Heisenberg. Mechanochemical feedback loops in development and disease. Cell, 178(1):12-25, 2019. - G Wayne Brodland, Vito Conte, P Graham Cranston, Jim Veldhuis, Sriram Narasimhan, M Shane Hutson, Antonio Jacinto, Florian Ulrich, Buzz Baum, and Mark Miodownik. Video force microscopy reveals the mechanics of ventral furrow invagination in drosophila. Pro ceedings of the National Academy of Sciences, 107(51):22111-22116, 2010. - 15. Rachele Allena, José Juan Muñoz, and Denis Aubry. Diffusion-reaction model for drosophila embryo development. Computer methods in biomechanics and biomedical engineering, 16 (3):235-248, 2013. - Moritz Mercker, Alexandra Köthe, and Anna Marciniak-Czochra. Mechanochemical symmetry breaking in hydra aggregates. Biophysical journal, 108(9):2396-2407, 2015 - Yonit Maroudas-Sacks, S Suganthan, Liora Garion, Yael Ascoli-Abbina, Ariel Westfried, Noam Dori, Iris Pasvinter, Marko Popović, and Kinneret Keren. Mechanical strain focusing at topological defect sites in regenerating hydra. Development, 152(4):DEV204514, 2025. - Yamini Ravichandran, Matthias Vogg, Karsten Kruse, Daniel JG Pearce, and Aurélien Roux Topology changes of hydra define actin orientation defects as organizers of morphogenesis Science Advances, 11(3):eadr9855, 2025. - Laurent Blanchoin, Rajaa Boujemaa-Paterski, Cécile Sykes, and Julie Plastino. Actin dy namics, architecture, and mechanics in cell motility. Physiological reviews, 94(1):235-263, 2014. - Erich Sackmann. How actin/myosin crosstalks guide the adhesion, locomotion and polarization of cells. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1853(11): 3132-3142, 2015. - Shiladitya Banerjee, Margaret L Gardel, and Ulrich S Schwarz. The actin cytoskeleton as an active adaptive material. Annual review of condensed matter physics, 11(1):421-439 2020 - Jacques Prost, Frank Jülicher, and Jean-François Joanny. Active gel physics. Nature physics, 11(2):111-117, 2015. - Frank Jülicher, Karsten Kruse, Jacques Prost, and J-F Joanny. Active behavior of the cytoskeleton. Physics reports, 449(1-3):3-28, 2007. - P. Recho, T. Putelat, and L. Truskinovsky. Contraction-driven cell motility. Phys. Rev. Lett., 111:108102, 2013 - Oliver M. Drozdowski, Falko Ziebert, and Ulrich S. Schwarz. Optogenetic control of migration of contractile cells predicted by an active gel model. Communications Physics, 6, 12 2023. ISSN 23993650. doi: 10.1038/s42005-023-01275-0. - Shuji Ishihara, Philippe Marcq, and Kaoru Sugimura. From cells to tissue: A continuum model of epithelial mechanics. Physical Review E, 96:022418, 2017. - Carsten Beta, Leah Edelstein-Keshet, Nir Gov, and Arik Yochelis. From actin waves to mechanism and back: How theory aids biological understanding. Elife, 12:e87181, 2023. - Daniel Riveline, Eli Zamir, Nathalie Q Balaban, Ulrich S Schwarz, Toshimasa Ishizaki, Shuh Narumiya, Zvi Kam, Benjamin Geiger, and Alexander D Bershadsky. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mdia1-dependent and rock-independent mechanism. The Journal of cell biology, 153 (6):1175-1186, 2001 - William M Bement, Marcin Leda, Alison M Moe, Angela M Kita, Matthew E Larson, Adriana E Golding, Courtney Pfeuti, Kuan-Chung Su, Ann L Miller, Andrew B Goryachev, et al Activator-inhibitor coupling between rho signalling and actin assembly makes the cell cortex an excitable medium. Nature cell biology, 17(11):1471-1483, 2015. - Johanna Bischof, Christoph A Brand, Kálmán Somogyi, Imre Májer, Sarah Thome, Masashi Mori, Ulrich S Schwarz, and Péter Lénárt. A cdk1 gradient guides surface contraction waves in oocytes. Nature communications, 8(1):1-10, 2017. - Jinghui Liu, Tom Burkart, Alexander Ziepke, John Reinhard, Yu-Chen Chao, Tzer Han Tan S Zachary Swartz, Erwin Frey, and Nikta Fakhri. Light-induced cortical excitability reveals - programmable shape dynamics in starfish oocytes. Nature Physics, pages 1-10, 2025. - Dominic Kamps, Johannes Koch, Victor O. Juma, Eduard Campillo-Funollet, Melanie Graessl, Soumya Banerjee, Tomáš Mazel, Xi Chen, Yao Wen Wu, Stephanie Portet, Anotida Madzvamuse, Perihan Nalbant, and Leif Dehmelt. Optogenetic Tuning Reveals Rho Amplification-Dependent Dynamics of a Cell Contraction Signal Network. *Cell Reports*, 33 (9), 2020. ISSN 22111247. doi: 10.1016/j.celrep.2020.108467. - Akira Katsumi, Julie Milanini, William B Kiosses, Miguel A del Pozo, Roland Kaunas, Shu Chien, Klaus M Hahn, and Martin Alexander Schwartz. Effects of cell tension on the small gtpase rac. The Journal of cell biology, 158(1):153–164, 2002. - Lijuan He, Jiaxiang Tao, Debonil Maity, Fangwei Si, Yi Wu, Tiffany Wu, Vishnu Prasath, Denis Wirtz, and Sean X Sun. Role of membrane-tension gated ca2+ flux in cell mechanosensation. *Journal of cell science*, 131(4):jcs208470, 2018. - Andrew R Houk, Alexandra Jilkine, Cecile O Mejean, Rostislav Boltyanskiy, Eric R Dufresne, Sigurd B Angenent, Steven J Altschuler, Lani F Wu, and Orion D Weiner. Membrane tension maintains cell polarity by confining signals to the leading edge during neutrophil migration. Cell, 148(1):175–188, 2012. - Achim Besser and Ulrich S Schwarz. Coupling biochemistry and mechanics in cell adhesion: A model for inhomogeneous stress fiber contraction. New Journal of Physics, 9(07): 1–27, 2007. ISSN 13672630. doi: 10.1088/1367-2630/9/11/425. - Cole Zmurchok, Dhananjay Bhaskar, and Leah Edelstein-Keshet. Coupling mechanical tension and gtpase signaling to generate cell and tissue dynamics. *Physical biology*, 15(4): 046004, 2018. - Andreas Buttenschön, Yue Liu, and Leah Edelstein-Keshet. Cell size, mechanical tension, and gtpase signaling in the single cell. Bulletin of mathematical biology, 82:1–33, 2020. - Michael F Staddon, Edwin M Munro, and Shiladitya Banerjee. Pulsatile contractions and pattern formation in excitable actomyosin cortex. *PLoS computational biology*, 18(3): e1009981, 2022. - Matthew Weitzman and Klaus M Hahn. Optogenetic approaches to cell migration and beyond. Current opinion in cell biology, 30:112–120, 2014. - Edward S Boyden, Feng Zhang, Ernst Bamberg, Georg Nagel, and Karl Deisseroth. Millisecond-timescale, genetically targeted optical control of neural activity. Nature neuroscience, 8(9):1263–1268, 2005. - Silvana Konermann, Mark D Brigham, Alexandro E Trevino, Patrick D Hsu, Matthias Heidenreich, Le Cong, Randall J Platt, David A Scott, George M Church, and Feng Zhang. Optical control of mammalian endogenous transcription and epigenetic states. *Nature*, 500 (7463):472–476, 2013. - Xue Wang, Xianjun Chen, and Yi Yang. Spatiotemporal control of gene expression by a light-switchable transgene system. Nature methods, 9(3):266–269, 2012. - Evan M Zhao, Yanfei Zhang, Justin Mehl, Helen Park, Makoto A Lalwani, Jared E Toettcher, and José L Avalos. Optogenetic regulation of engineered cellular metabolism for microbial chemical production. *Nature*, 555(7698):683–687, 2018. - Léo Valon, Fred Etoc, Amanda Remorino, Florencia Di Pietro, Xavier Morin, Maxime Dahan, and Mathieu Coppey. Predictive Spatiotemporal Manipulation of Signaling Perturbations Using Optogenetics. *Biophysical Journal*, 109(9):1785–1797, 2015. ISSN 15420086. doi: 10.1016/j.bpj.2015.08.042. - Léo Valon, Ariadna Marín-Llauradó, Thomas Wyatt, Guillaume Charras, and Xavier Trepat. Optogenetic control of cellular forces and mechanotransduction. *Nature Communications*, 8, 2017. ISSN 20411723. doi: 10.1038/ncomms14396. - Patrick W Oakes, Elizabeth Wagner, Christoph A Brand, Dimitri Probst, Marco Linke, Ulrich S Schwarz, Michael Glotzer, and Margaret L Gardel. Optogenetic control of rhoa reveals zyxin-mediated elasticity of stress fibres. Nature communications, 8(1):1–12, 2017. - T Andersen, D Wörthmüller, D Probst, I Wang, P Moreau, V Fitzpatrick, Thomas Boudou, US Schwarz, and M Balland. Cell size and actin architecture determine force generation in optogenetically activated cells. *Biophysical Journal*. 122(4):684–696, 2023. - Artur Ruppel, Dennis Wörthmüller, Vladimir Misiak, Manasi Kelkar, Irène Wang, Philippe Moreau, Adrien Méry, Jean Révilloud, Guillaume Charras, Giovanni Cappello, et al. Force propagation between epithelial cells depends on active coupling and mechano-structural polarization. Elife, 12:e83588, 2023. - Leone Rossetti, Steffen Grosser, Juan Francisco Abenza, Léo Valon, Pere Roca-Cusachs, Ricard Alert, and Xavier Trepat. Optogenetic generation of leader cells reveals a force– velocity relation for collective cell migration. *Nature Physics*, 20(10):1659–1669, 2024. - Athanasius FM Marée, Alexandra Jilkine, Adriana Dawes, Verônica A Grieneisen, and Leah Edelstein-Keshet. Polarization and movement of keratocytes: a multiscale modelling approach. *Bulletin of mathematical biology*, 68(5):1169–1211, 2006. - Carina M. Edwards and Ulrich S Schwarz. Force localization in contracting cell layers. *Physical Review Letters*, 107(12):1–5, 2011. ISSN 00319007. doi: 10.1103/PhysRevLett. 107.128101. - Aaron F. Mertz, Shiladitya Banerjee, Yonglu Che, Guy K. German, Ye Xu, Callen Hyland, M. Cristina Marchetti, Valerie Horsley, and Eric R. Dufresne. Scaling of traction forces with the size of cohesive cell colonies. *Physical Review Letters*, 108(19):1–5, 2012. ISSN 00319007. doi: 10.1103/PhysRevLett.108.198101. - Shiladitya Banerjee and M. Cristina Marchetti. Controlling cell-matrix traction forces by extracellular geometry. New Journal of Physics, 15, 2013. ISSN 13672630. doi: 10.1088/ 1367-2630/15/3/035015. - Josephine Solowiej-Wedderburn and Carina M Dunlop. Sticking around: Cell adhesion patterning for energy minimization and substrate mechanosensing. *Biophysical journal*, 121(9):1777–1786, 2022. - R. Chojowski, U.S. Schwarz, and F. Ziebert. The role of the nucleus for cell mechanics: an elastic phase field approach. Soft Matter, 20:4488, 2024. - Masatoshi Nishikawa, Sundar Ram Naganathan, Frank Jülicher, and Stephan W Grill. Controlling contractile instabilities in the actomyosin cortex. *Elife*, 6:e19595, 2017. - Moritz Mercker, Felix Brinkmann, Anna Marciniak-Czochra, and Thomas Richter. Beyond Turing: Mechanochemical pattern formation in biological tissues. *Biology Direct*, 11(1):1– 15, 2016. ISSN 17456150. doi: 10.1186/s13062-016-0124-7. - Marc Hippler, Kai Weißenbruch, Kai Richler, Enrico D Lemma, Masaki Nakahata, Benjamin Richter, Christopher Barner-Kowollik, Yoshinori Takashima, Akira Harada, Eva Blasco, et al. - Mechanical stimulation of single cells by reversible host-guest interactions in 3d microscaf folds. *Science advances*. 6(39):eabc2648, 2020. - Mariano Beguerisse-Díaz, Radhika Desikan, and Mauricio Barahona. Linear models of activation cascades: Analytical solutions and coarse-graining of delayed signal transduction. *Journal of the Royal Society Interface*, 13(121), 2016. ISSN 17425662. doi: 10.1098/rsif.2016.0409. - Arnab Saha, Masatoshi Nishikawa, Martin Behrndt, Carl-Philipp Heisenberg, Frank Jülicher, and Stephan W Grill. Determining physical properties of the cell cortex. *Biophysical journal*, 110(6):1421–1429, 2016. ## Modelling mechanochemical coupling in optogenetically activated cell layers - Supplemental text - D. Wörthmüller, F. Ziebert and U.S. Schwarz #### **General notation** In solid mechanics one typically expresses model equations in the Lagrangian (material) framework by describing a deforming solid in terms of coordinates $\hat{\mathbf{x}}$ representing the position of material particles in the undeformed configuration $\Omega_0$ . The current position of the material particles in the deformed configuration $\Omega(t)$ at time t are given by $\mathbf{x} = \chi(\hat{\mathbf{x}},t)$ . The two configurations are connected by the displacement vector field $\hat{\mathbf{u}}(\hat{\mathbf{x}},t) = \mathbf{x}(\hat{\mathbf{x}},t) - \hat{\mathbf{x}}$ . The deformation gradient tensor is defined as $\hat{\mathbf{F}} = \partial \mathbf{x}/\partial \hat{\mathbf{x}} = \mathbf{I} + \hat{\nabla} \hat{\mathbf{u}}$ and measures the local change of relative position of two points at the transition from the undeformed to the deformed configuration. Its determinant $\hat{J} = \det(\hat{\mathbf{F}})$ represents the local volume change. Describing the governing equations in terms of the coordinates $\mathbf{x}$ is known as the Eulerian framework where a fixed point in space is observed. In the limit of linear elasticity we do not distinguish between Lagrangian and Eulerian description and drop the $\wedge$ -symbol. ## Reaction-diffusion on time dependent domains in Lagrangian frame of reference For the pull-back of $$\frac{\partial c_i}{\partial t} + \nabla \cdot (\mathbf{v}(\mathbf{x}, t)c_i) = \nabla \cdot (\mathbf{D}\nabla c_i) + R_{c_i}(t)$$ (S1) to the reference configuration (Lagrangian coordinates) we exploit the transformation rules for scalar and vector fields as well as the involved differential operators (1). For mappings between the two reference systems we use the motion function $\mathbf{x} = \boldsymbol{\chi}(\hat{\mathbf{x}},t)$ . Each Eulerian field has a Lagrangian counterpart which states the equivalence of the two descriptions. Hence we write $c(\mathbf{x},t) = \hat{c}(\hat{\mathbf{x}},t)$ for the concentration field and $\mathbf{v}(\mathbf{x},t) = \hat{\mathbf{v}}(\hat{\mathbf{x}},t)$ for the velocity field. Here $\hat{\mathbf{v}} = \partial_t \boldsymbol{\chi}(\hat{x},t)$ denotes the material velocity. For the gradient of the scalar field $c(\mathbf{x},t)$ it holds $$\nabla c = \hat{\mathbf{F}}^{-\mathsf{T}} \hat{\nabla} \hat{c} . \tag{S2}$$ For the gradient of the vector field v we have $$\nabla \mathbf{v} = \hat{\nabla} \hat{\mathbf{v}} \hat{\mathbf{F}}^{-1} . \tag{S3}$$ The divergence of the vector field transforms according to $$\nabla \cdot \mathbf{v} = \frac{1}{\hat{J}} \hat{\nabla} \cdot (\hat{J} \hat{\mathbf{F}}^{-1} \hat{\mathbf{v}}) , \qquad (S4)$$ and we note that Piola's identity is given by $$\hat{\nabla} \cdot (\hat{J}\hat{\mathbf{F}}^{-1}) = 0 . \tag{S5}$$ The material time derivative of a field expressed in Eulerian coordinates is given by the convective derivative $$\frac{\mathrm{d}}{\mathrm{d}t}c(\mathbf{x},t) = \frac{\partial}{\partial t}c + \mathbf{v} \cdot \nabla c \equiv \frac{\partial \hat{c}}{\partial t}$$ (S6) Starting from the reaction-diffusion equation in Eulerian coordinates $$\frac{\partial c_i}{\partial t} + \mathbf{v} \cdot \nabla c_i + c_i(\nabla \cdot \mathbf{v}) = \nabla \cdot (\mathbf{D} \nabla c_i) + R_{c_i}(t) , \qquad (S7)$$ we note that the first two terms correspond to the convective time derivative. The third term on the left and the first term on the right hand side of the equation can be replaced by using the Piola transform Eq. (S4) such that $$\frac{\partial \hat{c}_i}{\partial t} + \hat{c}_i \frac{1}{\hat{J}} \hat{\nabla} \cdot (\hat{J} \hat{\mathbf{F}}^{-1} \hat{\mathbf{v}}) = \frac{1}{\hat{J}} \hat{\nabla} \cdot (\hat{J} \hat{\mathbf{F}}^{-1} \mathbf{D} \hat{\mathbf{F}}^{-1} \hat{\nabla} \hat{c}_i) + R_{\hat{c}_i}(t) , \qquad (S8)$$ and after multiplying by $\hat{J}$ we obtain $$\hat{J}\frac{\partial \hat{c}_i}{\partial t} + \hat{c}_i \hat{\nabla} \cdot (\hat{J}\hat{\mathbf{F}}^{-1}\hat{\mathbf{v}}) = \hat{\nabla} \cdot (\hat{J}\hat{\mathbf{F}}^{-1}\mathbf{D}\hat{\mathbf{F}}^{-1}\hat{\nabla}\hat{c}_i) + \hat{J}R_{\hat{c}_i}(t) . \tag{S9}$$ Applying Piola's identity to the second term on the left we find $$\hat{c}_i \hat{\nabla} \cdot (\hat{J} \hat{\mathbf{F}}^{-1} \hat{\mathbf{v}}) = \hat{c}_i \hat{J} \hat{\mathbf{F}}^{-1} \hat{\nabla} \hat{\mathbf{v}} = \hat{c}_i \hat{J} \hat{\mathbf{F}}^{-1} \frac{\partial \hat{\mathbf{F}}}{\partial t} = \hat{c}_i \frac{\partial \det(\hat{\mathbf{F}})}{\partial t} = \hat{c}_i \frac{\partial \hat{J}}{\partial t} , \qquad (S10)$$ and further using $\hat{\mathbf{C}} = \hat{\mathbf{F}}^\mathsf{T} \hat{\mathbf{F}}$ we end up with $$\frac{\partial}{\partial t}(\hat{J}\hat{c}_i) = \hat{\nabla} \cdot (\hat{J}\mathbf{D}\hat{\mathbf{C}}^{-1}\hat{\nabla}\hat{c}_i) + \hat{J}R_{\hat{c}_i}(t) . \tag{S11}$$ ### **Finite-Element formulation** ### Symmetric Weighted Interior Penalty Discontinuous Galerkin method The interface condition on the cell-cell junction $$-\hat{J}\mathbf{D}\hat{\mathbf{C}}^{-1}\hat{\nabla}\hat{c}_i \cdot \mathbf{N}_{\mathsf{CCJ}} = 0 \quad \mathsf{on} \quad \Gamma_{\mathsf{CCJ}} , \qquad (S12)$$ leads to a discontinuity in the solution. In order to account for abrupt concentration changes from one subdomain to the other we need a method which allows discontinuous functions across the membrane. The standard choice for such a problem is the discontinuous Galerkin method. In contrast to the continuous Galerkin methods, continuity and smoothness of the involved DG-functions is only enforced element-wise such that the solution may be discontinuous across element boundaries. If and where desired, continuity can be enforced through an appropriate penalty term. These methods are known as interior penalty discontinuous Galerkin methods (IPDG) (2-4). However, as can be seen from Eq. (S11) the diffusivity $\alpha \equiv \hat{J} D \hat{C}^{-1}$ in the Lagrangian frame is position dependent due to local deformations of the domain. Hence, we are dealing with heterogeneous diffusion and use a Symmetric Weighted Interior Penalty (SWIP) discontinuous Galerkin scheme (5). Let $\mathcal{T}(\Omega_0)$ be the triangulation of the domain $\Omega$ into finite elements $e \in \mathcal{T}(\Omega_0)$ . Further, let $\mathcal{F}$ denote the union of the boundary facets of all elements e. We distinguish between external facets $\mathcal{F}_{\mathsf{ext}}$ , internal facets $\mathcal{F}_{\mathsf{int}}$ and membrane facets $\mathcal{F}_{\mathsf{M}}$ such that $\mathcal{F} = \mathcal{F}_{\mathsf{ext}} \cup \mathcal{F}_{\mathsf{int}} \cup \mathcal{F}_{\mathsf{M}}$ with $\mathcal{F}_{\mathsf{int}} = \mathcal{F} \setminus (\mathcal{F}_{\mathsf{ext}} \cup \mathcal{F}_{\mathsf{M}})$ . Next, by $\hat{c}_{-}$ and $\hat{c}_+$ we denote scalar valued functions on two neighboring elements $e_-$ and $e_+$ . The normal vectors on a common facet of $e_{\pm}$ are given by $N_{\pm}$ . For example, $N_{-}$ defines the outward directed normal on $e_{-}$ pointing into $e_+$ . Following the SWIP-DG notations we introduce the jump and the weighted average of a quantity as $[\hat{c}] \equiv \hat{c}_+ \mathbf{N}_+ + \hat{c}_- \mathbf{N}_-$ and $\{\hat{c}\}_{\omega} \equiv \omega_+ \hat{c}_+ + \omega_- \hat{c}_-$ , respectively. Analogously, for piecewise vector valued functions $\hat{\bf q}$ one defines jump and weighted average as $[\hat{\bf q}] \equiv \hat{\bf q}_+ {\bf N}_+ + \hat{\bf q}_- {\bf N}_$ and $\{\hat{\mathbf{q}}\}_{\omega} \equiv \omega_{+}\hat{\mathbf{q}}_{+} + \omega_{-}\hat{\mathbf{q}}_{-}$ , respectively. The weights are defined as $\omega_{\pm} = \delta_{\alpha}^{\mp}/(\delta_{\alpha}^{+} + \delta_{\alpha}^{-})$ , where $\delta_{\alpha}^{\mp}$ is obtained from the diffusivity on two neighbouring elements $e_{\mp}$ by calculating $\delta_{\alpha}^{\mp} = \mathbf{N}_e^{\dagger} \boldsymbol{\alpha}_{\mp} \mathbf{N}_e$ . Note that the weights fulfill $\omega_+ + \omega_- = 1$ . Since we are only interested in having a discontinuity across the membrane facets $\mathcal{F}_{\mathsf{M}}$ we introduce a diffusion dependent penalty term to penalize jumps across all other internal facets $\mathcal{F}_{\rm int}$ which is defined as the harmonic mean $\gamma_{\alpha}=2\delta_{\alpha}^{+}\delta_{\alpha}^{-}/(\delta_{\alpha}^{+}+\delta_{\alpha}^{-})$ . Moreover, one may use these definitions to prove the identity $$[\![\hat{\mathbf{q}}\hat{c}]\!] = [\![\hat{\mathbf{q}}]\!] \{\hat{c}\}_{\omega} + \{\hat{\mathbf{q}}\}_{\omega} [\![\hat{c}]\!]. \tag{S13}$$ In the first step of the derivation of the DG weak form we multiply Eq. (S11) with a suitable test function $v_c \in \mathcal{V}$ and integrate over the whole simulation domain $\Omega_0$ which gives $$\int_{\Omega_0} \frac{\partial}{\partial t} (\hat{J}\hat{c}) v_c \, d\Omega_0 - \int_{\Omega_0} \hat{\nabla} \cdot \left( \boldsymbol{\alpha} \hat{\nabla} \hat{c} \right) v_c \, d\Omega_0 - \int_{\Omega_0} \hat{J} R_c(t) v_c \, d\Omega_0 = 0 .$$ (S14) Instead of directly using partial integration on the middle term of Eq. (S14) we first split it into a sum over element integrals and then apply Green's first theorem to obtain $$\int_{\Omega_0} \hat{\nabla} \cdot \left( \boldsymbol{\alpha} \hat{\nabla} \hat{c} \right) v_c \, d\Omega_0 = \sum_{e \in \mathcal{T}(\Omega_0)} \int_e \hat{\nabla} \cdot \left( \boldsymbol{\alpha} \hat{\nabla} \hat{c} \right) v_c \, d\Omega_0$$ $$= \sum_{f_e \in \mathcal{F}(\Omega_0)} \int_{f_e} \boldsymbol{\alpha} \hat{\nabla} \hat{c} \cdot \tilde{\mathbf{N}}_e v_c \, ds$$ $$- \sum_{e \in \mathcal{T}(\Omega_0)} \int_e \boldsymbol{\alpha} \hat{\nabla} \hat{c} \cdot \hat{\nabla} v_c \, d\Omega_0 . \tag{S15}$$ Here, $f_e$ denotes the facets of element e and $\tilde{\mathbf{N}}_e$ describes the outward directed normal vector on the facets of the element. The first term in Eq. (S15) is split again into the exterior, interior and membrane facets $$\sum_{f_e \in \mathcal{F}(\Omega_0)} \int_{f_e} \boldsymbol{\alpha} \hat{\nabla} \hat{c} \cdot \tilde{\mathbf{N}}_e v_c \, ds = \sum_{f_e \in \mathcal{F}_{\mathsf{ext}}(\Omega_0)} \int_{f_e} \boldsymbol{\alpha} \hat{\nabla} \hat{c} \cdot \tilde{\mathbf{N}}_e v_c \, ds + \sum_{f_e \in \mathcal{F}_{\mathsf{int}}(\Omega_0)} \int_{f_e} \boldsymbol{\alpha} \hat{\nabla} \hat{c} \cdot \tilde{\mathbf{N}}_e v_c \, ds + \sum_{f_e \in \mathcal{F}_{\mathsf{M}}(\Omega_0)} \int_{f_e} \boldsymbol{\alpha} \hat{\nabla} \hat{c} \cdot \tilde{\mathbf{N}}_e v_c \, ds . \tag{S16}$$ Note that each internal facet and each membrane facet is shared by two adjacent elements $e_-$ and $e_+$ (see Fig. S1) such that integrals along the common facets add up to a jump $$\int_{f_{\pm}} \boldsymbol{\alpha} \hat{\nabla} \hat{c} \cdot \tilde{\mathbf{N}}_{\pm} v_c \, ds = \int_{f} (\delta_{\alpha}^{+} \hat{\nabla} \hat{c}_{+} v_{c,+} - \delta_{\alpha}^{-} \hat{\nabla} \hat{c}_{-} v_{c,-}) \cdot \tilde{\mathbf{N}}_{+} \, ds = \int_{f} [\![\boldsymbol{\alpha} \hat{\nabla} \hat{c} v_c]\!] \, ds \,. \tag{S17}$$ Summing up over all elements e in Eq. (S15) and Eq. (S16) while respecting zero-flux boundary conditions yields $$\int_{\Omega_0} \hat{\nabla} \cdot \left( \boldsymbol{\alpha} \hat{\nabla} \hat{c} \right) v_c \, d\Omega_0 = -\int_{\Omega_0} \boldsymbol{\alpha} \hat{\nabla} \hat{c} \cdot \hat{\nabla} v_c \, d\Omega_0 + \int_{\mathcal{F}_{int}} \left[ \boldsymbol{\alpha} \hat{\nabla} \hat{c} v_c \right] \, ds \,. \tag{S18}$$ The last term in Eq. (S18) is further expanded using the identity in Eq. (S13) which yields $$\int_{\mathcal{F}_{int}} \left[ \boldsymbol{\alpha} \hat{\nabla} \hat{c} v_c \right] ds = \int_{\mathcal{F}_{int}} \left[ \boldsymbol{\alpha} \hat{\nabla} \hat{c} \right] \cdot \{ v_c \}_{\omega} ds + \int_{\mathcal{F}_{int}} \{ \boldsymbol{\alpha} \hat{\nabla} \hat{c} \}_{\omega} \cdot \left[ v_c \right] ds.$$ (S19) Since the exact solution of the diffusion equation is expected to be smooth we enforce continuity of the fluxes by setting $[\alpha \hat{\nabla} \hat{c}] = 0$ . To further enforce continuity of the solution we exploit $[\hat{c}] = 0$ and add a term to symmetrize the problem. Additionally, we ensure stability of the problem by adding a stabilizing term according to Ern et al. (5) and Douglas and Dupont (6) which finally leads to $$\int_{\mathcal{F}_{int}} \left[ \boldsymbol{\alpha} \hat{\nabla} \hat{c} v_c \right] ds = \int_{\mathcal{F}_{int}} \left\{ \boldsymbol{\alpha} \hat{\nabla} \hat{c} \right\}_{\omega} \cdot \left[ v_c \right] ds + \int_{\mathcal{F}_{int}} \left\{ \boldsymbol{\alpha} \hat{\nabla} v_c \right\}_{\omega} \cdot \left[ \hat{c} \right] ds - \int_{\mathcal{F}_{int}} \frac{s_N}{h} \gamma_{\alpha} \left[ \hat{c} \right] \cdot \left[ v_c \right] ds . \tag{S20}$$ In Eq. (S20), $s_N$ denotes the so-called Nitsche paramater, which must be chosen sufficiently large to ensure continuity across internal facets (7), and h the average element diameter. Next, we define $$\mathcal{D}(\hat{c}, v_c, \boldsymbol{\alpha}) := \int_{\Omega_0} \boldsymbol{\alpha} \hat{\nabla} \hat{c} \cdot \hat{\nabla} v_c \, d\Omega_0 - \int_{\mathcal{F}_{int}} \{\boldsymbol{\alpha} \hat{\nabla} \hat{c}\}_{\omega} \cdot \llbracket v_c \rrbracket \, ds$$ $$- \int_{\mathcal{F}_{int}} \{\boldsymbol{\alpha} \hat{\nabla} v_c\}_{\omega} \cdot \llbracket \hat{c} \rrbracket \, ds + \int_{\mathcal{F}_{int}} \frac{s_N}{h} \gamma_{\alpha} \llbracket \hat{c} \rrbracket \cdot \llbracket v_c \rrbracket \, ds \,, \tag{S21}$$ and hence arrive at the final weak form statement of Eq. (S11) which reads $$\int_{\Omega_0} \frac{\partial}{\partial t} (\hat{J}\hat{c}) v_c \, d\Omega_0 + \mathcal{D}(\hat{c}, v_c, \boldsymbol{\alpha}) - \int_{\Omega_0} \hat{J} R_c(t) v_c \, d\Omega_0 = 0 .$$ (S22) We note that an integral part of our model design is that continuity is only enforced on the internal edges. Thus jumps are possible only across the interface of the two subdomains i.e. across the membrane. In our case this means that the reactants in each cell cannot pass the cell-cell junction. This leads to a variety of possibilities in the treatment of multicellular systems. Cellular contractility in principle can be described by distinct reaction-diffusion systems in each cell. The RD-systems within the cells can then be coupled by appropriate mechano-chemical coupling terms to account for mechanosensing at the intercellular junction. The weak form of Eq. (S11) finally reads $$0 = \int_{\Omega_0} \frac{\partial}{\partial t} (\hat{J}\hat{c}) v_c \ d\Omega_0 + \int_{\Omega_0} \boldsymbol{\alpha} \hat{\nabla} \hat{c} \cdot \hat{\nabla} v_c \ d\Omega_0 \\ - \underbrace{\int_{\mathcal{F}_{\rm int}} \{\boldsymbol{\alpha} \hat{\nabla} \hat{c}\}_{\omega} \cdot [\![v_c]\!] \ ds}_{\text{consistency}} - \underbrace{\int_{\mathcal{F}_{\rm int}} \{\boldsymbol{\alpha} \hat{\nabla} v_c\}_{\omega} \cdot [\![\hat{c}]\!] \ ds}_{\text{symmetry}} + \underbrace{\int_{\mathcal{F}_{\rm int}} \frac{s_N}{h} \gamma_{\alpha} [\![\hat{c}]\!] \cdot [\![v_c]\!] \ ds}_{\text{penalty}} - \int_{\Omega_0} \hat{J} R_c(t) v_c \ d\Omega_0 \ ,$$ where $s_N$ denotes the Nitsche paramater, which must be chosen sufficiently large to ensure continuity across internal facets (7), and h the average element diameter. The notation is illustrated in Fig. S1a. #### Weak formulation for the elastic domain To derive the weak formulation of $$\nabla \cdot \boldsymbol{\sigma} = Y(\mathbf{x})\mathbf{u} , \qquad (S23)$$ we multiply with a vector valued test function $\mathbf{v} \in \mathcal{V}(\Omega_0)$ and integrate over the domain $\Omega_0$ of the undeformed configuration $$\int_{\Omega_0} (\nabla \cdot \boldsymbol{\sigma}) \cdot \mathbf{v} \ d\Omega_0 = \int_{\Omega_0} Y(\mathbf{x}) \mathbf{u}(\mathbf{x}) \cdot \mathbf{v} \ d\Omega_0 \ . \tag{S24}$$ The left hand side can be integrated using integration by parts i.e. using the following identity $$\nabla \cdot (\boldsymbol{\sigma} \cdot \mathbf{v}) = (\nabla \cdot \boldsymbol{\sigma}) \cdot \mathbf{v} + \boldsymbol{\sigma} : \nabla \mathbf{v} . \tag{S25}$$ This allows to simplify Eq. (\$24) to $$\int_{\Omega_0} \boldsymbol{\sigma} : \nabla \mathbf{v} \ d\Omega_0 - \int_{\Gamma} (\boldsymbol{\sigma} \cdot \mathbf{N}) \cdot \mathbf{v} \ ds + \int_{\Omega_0} Y \mathbf{u} \cdot \mathbf{v} \ d\Omega_0 = 0 .$$ (S26) Here, $\sigma \cdot \mathbf{N}$ is the traction vector at the boundary $\Gamma = \partial \Omega_0$ which is set to zero in case of stress free boundaries and hence, the final weak form statement reads $$\int_{\Omega_0} \boldsymbol{\sigma} : \nabla \mathbf{v} \, d\Omega_0 + \int_{\Omega_0} Y \mathbf{u} \cdot \mathbf{v} \, d\Omega_0 = 0 .$$ (S27) #### **Time-discretisation** All time dependent quantities Q(t) are discretized using an implicit (backward Euler) scheme at a given time $t^{(n+1)}$ $$\left(\frac{\mathrm{d}Q}{\mathrm{d}t}\right)^{(n+1)} \approx \frac{Q^{(n+1)} - Q^{(n)}}{\Delta t} \,. \tag{S28}$$ #### Mesh generation The meshes for the three different systems were generated with Gmsh (9). For the cell chain and the tissue-like monolayer we made sure to create a mesh which respects the symmetry of the system. The meshes are shown in Fig. S1c. ## Literature review RhoA-pathway Having reviewed the relevant literature, we found that the model as presented by Kamps et al. (8) contains all important components which are necessary for a profound description of the RhoA pathway. In contrast to the RhoA-actomyosin system as introduced by Staddon et al. (10) it explicitly contains GEF as a downstream effector of RhoA, and thus provides an important interface for light-induced contraction as GEF activity can be controlled by optogenetic constructs like the CRY2/CIBN system. In combination with experimental measurements Kamps et al. (8) proposed a reaction scheme for the active reactants GEF (G), RhoA (R) and myosin (M) which reads $$\frac{\mathrm{d}G}{\mathrm{d}t} = k_3 R(G_T - G) - k_4 GM \tag{S29}$$ $$\frac{\mathrm{d}R}{\mathrm{d}t} = \frac{k_1 G(R_T - R)}{K_{m1} + R_T - R} - k_2 \frac{R}{K_{m2} + R}$$ (S30) $$\frac{\mathrm{d}M}{\mathrm{d}t} = \frac{k_5 R(M_T - M)}{K_{m5} + M_T - M} - k_6 \frac{M}{K_{m6} + M} \,. \tag{S31}$$ $G_T, R_T$ and $M_T$ denote the total concentrations of the species which the authors assume to be constant. The rate constants are denoted by $k_i$ and the Michaelis-Menten constants are given by the $K_{mi}$ . The membrane and cytosol associated species represent the active and passive states, respectively. This terminology stems from experimental studies which show that the active forms of RhoA and myosin are predominantly found in the vicinity of the plasma membrane and the submembraneous actin cortex. In contrast, the inactive forms are associated with the cytosol (11, 12). The RhoA protein for example exhibits a lipophilic end which enables it to bind to lipid membranes (13). However, so-called guanosine dissociation inhibitors (GDIs) may bind to Rho-GDPs, not only keeping them in a permanently inactive state but also preventing its membrane localization by shielding the hydrophilic end and additionally making it soluble in the cytoplasm (14). The reaction scheme also highlights the two feedback loops which are important to describe the excitable and oscillatory dynamics that are observed in experiments (see Fig. S1 d). The positive feedback loop stems from the observation that RhoA activity at the membrane further induces GEF membrane recruitment. Due to Rho activation by GEFs, this closes a positive feedback loop (8). The negative feedback loop can be traced back to the ability of myosin to inhibit the nucleotide exchange activity of GEFs by binding to their Dbl-homology domain (DH) (15). Essentially, the authors could identify the total concentration of active GEF as the main bifurcation parameter for the switch from stable to oscillatory states at intermediate GEF concentrations. In experiments, they vary this bifurcation parameter by treating cells with nocodazole, which leads to depolymerization of microtubules from which GEFs are then released. The crossover from stable to osciallatory dynamics happens as a function of the total GEF concentration. #### **Parametrization** #### Non-linear RhoA pathway For the simulations with the non-linear Rho pathway we follow Kamps et al. (8). In Eqs. (S29) to (S31) we treat the inactive species separately with $c_i = c_T - c$ . The inactive species diffuse faster than the active species $D_{c,i} > D_c$ . The reaction kinetics are given by $R_{c_i} = -R_c$ . Hence, for the non-linear system we have a total of six coupled reaction diffusion equations coupled to the PDE describing the cell layer. Fig. S1d shows the schematic of the coupled system of PDE's. The reaction diffusion system alone exhibits instabilities that lead to the emergence of traveling wave peaks. To induce an instability we impose initial conditions on the active species by adding small random fluctuations of the form $$c_0(\mathbf{x}) = \bar{c}_0 + \delta c_0(0.5 - \mathcal{U}_{[0,1](\mathbf{x})}),$$ (S32) where $\mathcal{U}_{[0,1](\mathbf{x})}$ is the probability density function of the continuous uniform distribution, $\bar{c}_0$ the homogeneous concentration field and $\delta c_0$ a small flucutation. For the inactive species we set $c_{i,0}(\mathbf{x}) = c_T - c_0(\mathbf{x})$ . Fluctuations are $\delta G_0 = 0.05$ , $\delta R_0 = 0.01$ and $\delta M_0 = 0$ . All other relevant parameters can be found in Tab. S1 or in the supplemental information of (8). ### Linearized RhoA pathway For the parametrization of the proposed linear signaling cascade we rely on the order of magnitudes found in the respective literature. Within the limits of our simplified model the total concentrations of RhoA and myosin are irrelevant since they do not explicitly enter the reaction kinetics in the weakly activated regime. The parameters are chosen such that the steady state concentrations of RhoA and myosin are roughly 10% of the total concentration (10, 16). Further, the reaction rates are chosen such that the time course of the myosin concentration approximates the typical time course of actively generated stresses during optogenetic activation (8, 10, 17–19). The time course of the input signal was adapted to the measured CRY2 membrane recruitment and is described by a relaxation time of $\lambda \approx 10^{-2}\,\mathrm{s}$ (20). The reference values from (8) were estimated as follows. The second term in Eq. (S30) can be approximated in a weakly activated regime with $K_{m2}\gg R$ as $k_2R/(K_{m2}+R)\approx k_2R/K_{m2}\equiv b\approx 2\,\mathrm{s}^{-1}$ . The same argument applied to the second term in Eq. (S31) gives $k_6M/(K_{m6}+M)\approx k_6M/K_{m6}\equiv s\approx 0.0051\,\mathrm{s^{-1}}$ . k can be estimated from the first term in Eq. (S31) by $k_5/(K_{m5}+M_T)=\tilde{k}=0.004\,65\,\mathrm{s^{-1}}$ from which $k=\tilde{k}R_T=0.002\,\mathrm{s^{-1}}$ follows. All relevant parameters are summarized in Tab. S2. #### **Elastic layer** For the parametrisation of the cell and the substrate we follow the typical orders of magnitude. Cell and substrate have a Young's modulus E in the range of several kPa. For simplicity we choose $E_c \approx E_s$ , which also reflects that cells typically adapt to the stiffness of their environment. The viscoelastic time scale $\tau_c$ is a free parameter in the simulations and hence the viscosity of the cell layer is defined by $\eta_c = \tau_c E_c$ . The spring stiffness density is calculated by $Y_s = \pi E_s/L_c$ (21), where $L_c$ is the lateral extent of a cell. All other relevant parameters are summarized in Tables S3 to S5. ## Analytical solution of the weakly activated signaling cascade Beguerisse-Díaz et al. (22) provide a variety of analytical solutions to weakly activated signalling cascades triggered by different input signals i.e. time course of the stimulus such as step-function, Gaussian or, as in our case, an exponential decreasing perturbation. The signaling species $x_1^*$ is activated by an external stimulus, which in turn activates species $x_2^*$ , and so on. In a weakly activated regime and for $x_i^*(0)=0$ (which is the initial condition for the perturbations $\delta r$ and $\delta m$ ) the output function of species $x_n^*$ is given by $$x_n^*(t) = \left(\prod_{i=1}^n \alpha_i\right) \sum_{i=1}^n \left(\prod_{q=1, q \neq i}^n (\beta_i - \beta_q)^{-1}\right)$$ $$\times \int_0^t e^{-\beta_i (t-\tau)} A(\tau) \, d\tau . \tag{S33}$$ Here $\alpha_i$ and $\beta_i$ denote the activation and deactivation rates of each species i, respectively, and A(t) is a stimulus applied to the first species. Applied to the system of equations $$\frac{\mathrm{d}\delta r}{\mathrm{d}t} = a\delta g(t) - b\delta r \;, \quad \frac{\mathrm{d}\delta m}{\mathrm{d}t} = k\delta r - s\delta m \;, \tag{S34}$$ together with $A(\tau) = \delta g(\tau) = g_a e^{-\lambda \tau}$ (as in the main text) this leads to $$\delta \tilde{r}(t) = \frac{\delta r}{r_{ss}} = \frac{b\alpha}{b-\lambda} \left( e^{-\lambda t} - e^{-bt} \right) , \qquad (S35)$$ $$\delta \tilde{m}(t) = \frac{\delta m}{m_{ss}} = b\alpha s \left( \frac{e^{-\lambda t} - e^{-bt}}{(b - s)(b - \lambda)} - \frac{e^{-\lambda t} - e^{-st}}{(b - s)(s - \lambda)} \right) . \tag{S36}$$ ## **Description of movies** **Movie S1:** Strain-dependent feedback in a cell doublet with strong coupling. Activation of the left cell leads to substantial contraction in the right cell. Although optogenetic stimulation is only applied to the left cell, the whole doublet contracts as a unit i.e. symmetrically. Parameters used as listed in Tab. S2 and Tab. S3 with $a_{\delta \tilde{q}} = 100$ and $\tau_c = 10$ s. **Movie S2:** Strain-dependent feedback in a cell doublet with weak coupling. Activation of the left cell leads to weak contraction in the right cell. This leads to an overall asymmetric shape deformation of the whole doublet in which the right cell gets pulled to the left. Parameters used as listed in Tab. S2 and Tab. S3 with $a_{\delta \tilde{q}} = 0.1$ and $\tau_c = 10 \mathrm{s}$ . **Movie S3:** Propagation of a contraction wave through a cell chain visualized by the deformation field (color code: red color corresponds to displacement to the right, blue to the left). Optogenetic activation of the left cell leads to a contraction. The coupling to the neighboring cell induces a contraction which propagates from the left end of the cell chain to the right end. Parameters used as listed in Tab. S2 and Tab. S4. Coupling and viscoelastic time scale where chosen from the transmissive regime. Red lines indicate initial cell-cell boundary positions. Movie S4: Propagation of contraction wave through a tissue-like monolayer comprised of 28 cells. Here, the contractility is controlled by the non-linear Rho-pathway which in itself exhibits wave-like instabilities. The parameters are chosen according to Tab. S1 and Tab. S5. At early times, an instability is triggered in the centered cell on the left by adding small random fluctuations on the GEF and Rho component. These random fluctuations lead to several concentrated traveling wave peaks which in turn trigger GEF activation in adjacent cells through the strain-dependent coupling. Thus, a contraction wave spreads through the whole tissue activating all cells and triggering the wave-like instability. The emerging activation pattern represents the up-down symmetry of the tissue. Cells at the free edge (edge with no cell-cell boundary) strongly deform when a contraction peak gets close to the free cell edge. Figure S1: Panel (a) and (b) schematically explains the notation used in the derivation of the discontinuous Galerkin finite element method. Panel (c) depicts the meshes for the three cell systems. Colors highlight different cells. For cell chain and tissue-like monolayer we enforced meshes to respect the symmetry of the system's geometry. Panel (d) shows the coupled system of the non-linear RhoA pathway by Kamps et al. (8) coupled to the mechanics of the elastic layer. Mechanical feedbacks represented by yellow and blue arrows. Figure S2: Different oscillations observed in a cell chain coupled to the linearized RhoA pathway. Burst-like oscillations (left) correspond to large variations in strain energy while contractile oscillations (right) corresponds to states in which the whole cell chain remains on average in a state of non-vanishing strain energy. | Abbreviation | Value | | | | |-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--| | | GEF | | | | | $G_T$ $k_3$ $k_4$ $D_G$ $D_{G_i}$ | $0.2\mathrm{M}$ $1.19\mathrm{M}^{-1}\mathrm{s}^{-1}$ $3.98\mathrm{M}^{-1}\mathrm{s}^{-1}$ $0.3\mu\mathrm{m}^2\mathrm{s}^{-1}$ $9.28\mu\mathrm{m}^2\mathrm{s}^{-1}$ | | | | | RhoA | | | | | | $R_T$ $K_{m1}$ $K_{m2}$ $k_1$ $k_2$ $D_R$ $D_{R_i}$ | $0.443M$ $2.42M$ $0.0745M$ $(3.88K_{m1})s^{-1}$ $(2.04K_{m2})Ms^{-1}$ $0.3 \mu m^2 s^{-1}$ $9.28 \mu m^2 s^{-1}$ | | | | | Myosin | | | | | | $M_T$ $K_{m5}$ $K_{m6}$ $k_5$ $k_6$ $D_M$ $D_{M_i}$ | $\begin{array}{c} 1.24\mathrm{M} \\ 0.014\mathrm{M} \\ 0.784\mathrm{M} \\ (0.417K_{m5})\mathrm{s}^{-1} \\ (0.00509K_{m9})\mathrm{Ms}^{-1} \\ 0.03\mu\mathrm{m}^2\mathrm{s}^{-1} \\ 0.9\mu\mathrm{m}^2\mathrm{s}^{-1} \end{array}$ | | | | Table S1: Parameter values for the non-linear Rho pathway with fast and slow diffusing species according to (8). Here, we use M to indicate units of concentration which corresponds to $10^6$ molecules per cell (as given in the SI of (8)). | Abbreviation | Used value | Ref. value | Reference | | |----------------------|--------------------------------|-----------------------------------------------|-----------|--| | $\overline{\lambda}$ | $0.01\mathrm{s}^{-1}$ | $0.008\mathrm{s^{-1}} - 0.018\mathrm{s^{-1}}$ | (20) | | | $\alpha$ | 100% | 20% - 130% | (20) | | | b | $0.0165\mathrm{s}^{-1}$ | $2\mathrm{s}^{-1}$ | (8) | | | k | $0.1{\rm s}^{-1}$ | $0.1408\mathrm{s}^{-1}$ | (10) | | | | | $0.002\mathrm{s}^{-1}$ | (8) | | | s | $0.083{\rm s}^{-1}$ | $0.0051\mathrm{s}^{-1}$ | (8) | | | | | $0.082\mathrm{s}^{-1}$ | (10) | | | $m_{\sf ss}$ | 0.1 | 0.1 - 0.8 | (10) | | | | | | (16) | | | $D_R, D_G$ | $0.3\mu{ m m}^2{ m s}^{-1}$ | $0.28\mu{\rm m}^2{\rm s}^{-1}$ | (8) | | | | | $0.1\mu{ m m}^2{ m s}^{-1}$ | (23) | | | $D_M$ | $0.03\mu{\rm m}^2{\rm s}^{-1}$ | $0.03\mu{\rm m}^2{\rm s}^{-1}$ | (8) | | | | | $0.01\mu{\rm m}^2{\rm s}^{-1}$ | (23) | | | Deduced | | | | | | $r_{ss}$ | 0.083 | | | | | a | $0.0014\mathrm{s}^{-1}$ | $< 0.002 \mathrm{s}^{-1}$ | (10) | | Table S2: Parameter values for the linearized RhoA signaling cascade. We set most of the parameters in accordance with the reported ranges. The parameters taken from (8) where obtained by taking the corresponding activation and deactivation rates in a weakly activated regime for which the Michaelis-Menten terms can be linearly approximated. However, their model does not provide a basal activation rate. The reported rate constants as stated in the work of Staddon et al. (10) were deduced from Michaux et al. (24). The parameters $r_{\rm ss}$ and a are not independent and consequently deduced from the fixed parameters. | Abbreviation | Value | | | | |-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--|--| | Cell parameters | | | | | | Young's Modulus $E_c$<br>Poisson's ratio $\nu_c$<br>Cell height $h_c$ | $5 \cdot 10^{3} \text{Pa}$<br>0.5<br>$1 \cdot 10^{-6} \text{m}$<br>$45 \cdot 10^{-6} \text{m}$ | | | | | Lateral extent $L_c$ Two-dimensional active stress $\sigma_0$ | $45 \cdot 10^{-3} \text{N m}^{-1}$ | | | | | Substrate parameters | | | | | | Young's Modulus $E_s$ Poisson's ratio $\nu_s$ | $5 \cdot 10^3 \text{Pa}$ $0.5$ | | | | Table S3: Parameter values for the simulation of the cell doublet on an H-pattern | Abbreviation | Value | | | | |-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--|--|--| | Cell parameters | | | | | | Young's Modulus $E_c$<br>Poisson's ratio $\nu_c$<br>Cell height $h_c$<br>Lateral extent $L_c$<br>Two-dimensional active stress $\sigma_0$ | $5 \cdot 10^{3} Pa$ $0.5$ $1 \cdot 10^{-6} m$ $40 \cdot 10^{-6} m$ $2 \cdot 10^{-3} N m^{-1}$ | | | | | Substrate parameters | | | | | | Young's Modulus $E_s$ Poisson's ratio $\nu_s$ | $2.5 \cdot 10^{3} \text{Pa}$ 0.5 | | | | Table S4: Parameter values for the simulation of the cell chain with continuous adhesion and unidirectional contraction. | Abbreviation | Value | |-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------| | Cell parameters | | | Young's Modulus $E_c$ Poisson's ratio $\nu_c$ Cell height $h_c$ Lateral extent $L_c$ Two-dimensional active stress $\sigma_0$ | $2.5 \cdot 10^{3} Pa$ $0.5$ $1 \cdot 10^{-6} m$ $40 \cdot 10^{-6} m$ $2.5 \cdot 10^{-3} N m^{-1}$ | | Substrate paramete | ers | | Young's Modulus $E_s$ Poisson's ratio $\nu_s$ | $1 \cdot 10^{3} \text{Pa}$ 0.5 | Table S5: Parameter values for the simulation of the tissue-like monolayer with non-linear Rho-pathway. Here, we chose a smaller Young's modulus for the cell, a softer substrate and a slightly larger value for active stress in order to allow for more visible deformations. ## Example for python FEM-code for photoactivation of a cell doublet on H-pattern Our model was implemented in the FEM-framework FEniCS (25). This is an example code for the photoactivation of a cell doublet with mechanochemical feedback. ``` 1 # Import required libraries for finite element analysis and data processing 2 from dolfin import * \# FEniCS/DOLFIN for finite element computations 3 import numpy as np # Numerical computations 4 import random # Random number generation 5 import copy # Deep copying of objects 6 import matplotlib.pyplot as plt # Plotting utilities # Hyperbolic tangent function from ufl import tanh from numpy import savetxt # Array saving utility 9 import pandas as pd # Data manipulation and analysis 10 import os # Operating system interface # CSV file operations 11 import csv ^{\prime\prime\prime} Finite-Element-Simulation of a coupled system of reaction-diffusion equations and 2D 13 viscoelasticity 14 This code implements a coupled mechanochemical model for cell mechanics using FEM. 15 1. Reaction-diffusion equations for biochemical species 2. 2D viscoelastic mechanics for cell deformation 18 19 3. Mechanochemical feedback between strain and signaling 20 21 Copyright: Dennis Woerthmueller Date: February 14, 2024 22 23 24 25 # Create data directory for simulation outputs path_to_rawData = 'Data/' if not os.path.exists(path_to_rawData): 27 os.makedirs(path_to_rawData) 29 30 # Load simulation parameters from CSV file with open('inputParams.csv', newline = '') as file: 31 reader = csv.reader(file, quoting = csv.QUOTE_NONNUMERIC, 32 33 delimiter = ' ') rows = list(reader) 34 35 keys = rows[0] # Parameter names values = rows[1] # Parameter values 36 37 38 # Create parameter dictionary from keys and values 39 key_value_pairs = zip(keys, values) p = dict(key_value_pairs) 41 42 def calculateStrainEnergy(u, kN, dx): 43 44 Calculate the elastic strain energy in the substrate. 45 46 Args: u (Function): Displacement field 48 kN (Expression): Spring constant field dx (Measure): Integration measure 49 50 Returns: 51 float: Total strain energy 52 53 54 return assemble(0.5*kN*inner(u,u)*dx) 55 56 class KNExpression (UserExpression): ``` ``` 57 58 Define position-dependent spring constants for an H-shaped micropattern. 59 The pattern consists of two vertical arms connected by a horizontal crossbar. 60 Spring constants are non-zero only within the pattern. 61 62 63 def __init__(self,Y, armWidth, degree=2): 64 print("BIS HIER") 65 super().__init__() self.armWidth = armWidth # Width of pattern arms 66 self.Y = Y # Young's modulus / spring constant 67 68 69 def eval(self, value, x): 70 71 Evaluate spring constant at given position. 72 73 Args: value: Output value (modified in-place) 74 75 x: Spatial coordinates 76 d = 1 # Domain size 77 # Set spring constant Y in arms and crossbar, O elsewhere 78 if (x[0] \le -(d/2) + self.armWidth or x[0] >= (d/2) - 79 80 between(x[1],(-self.armWidth/2,self.armWidth/2))): 81 value[0] = self.Y 82 else: 83 value[0] = 0.0 84 85 def normalize_solution(U, max): 86 Normalize solution vector by dividing by maximum value. 87 88 89 90 U (Function): Solution vector to normalize 91 max (float): Maximum value to normalize by 92 93 Returns: 94 Function: Normalized solution vector 95 U_array = U.vector().get_local() 96 U_array /= max 97 98 U.vector()[:] = U_array 99 return U 100 def eps(v): 102 Calculate strain tensor from displacement field. 104 105 Args: 106 v (Function): Displacement field 108 Returns: Tensor: Symmetric gradient (strain tensor) 109 111 return sym(grad(v)) 113 class selectedSubdomain(UserExpression): 114 115 Mark specific subdomains with different values. Used to identify and assign properties to different regions. 116 117 def __init__(self, subdomains, val_inside, val_outside, subdomain_id, **kwargs): 118 119 super().__init__() # Subdomain markers 120 self.subdomains = subdomains self.val_inside = val_inside # Value inside selected subdomain 122 ``` ``` self.subdomain_id = subdomain_id # ID of subdomain to mark 123 124 125 def eval_cell(self, values, x, cell): 126 127 Evaluate marker value for each cell. 128 129 Aras: 130 values: Output value (modified in-place) 131 x: Spatial coordinates 132 cell: Current cell if self.subdomains[cell.index] == self.subdomain_id: 134 135 values[0] = self.val_inside 136 else: 137 values[0] = self.val_outside 138 139 class SquareCompartmentDoublet(UserExpression): 140 141 Define square compartment for cell doublet simulation. 142 Used to create initial conditions and activation patterns. 143 144 def __init__(self,A,d, degree=0): 145 super().__init__() 146 self.A = A # Amplitude 147 self.d = d # Distance/size parameter 148 def eval(self, value, x): 149 150 151 Evaluate compartment value at given position. 152 154 value: Output value (modified in-place) x: Spatial coordinates 155 156 if (x[0] \leftarrow -self.d): 158 value[0] = self.A 159 else: value[0] = 0.0 160 161 162 def get_boundary_of_deformed_mesh(u, geo_file_name): 163 164 Extract boundary coordinates of deformed mesh. Used for tracking boundary deformation over time. 165 166 167 Args: 168 u (Function): Displacement field 169 geo_file_name (str): Base name of geometry files 170 171 Returns: numpy.array: Sorted boundary coordinates 172 173 # Load mesh and boundary definitions 174 175 dummy_mesh = Mesh("%s.xml"%(geo_file_name)) boundaries = MeshFunction("size_t", dummy_mesh, "%s_facet_region.xml"%(geo_file_name)) 176 subdomains = MeshFunction("size_t", dummy_mesh, "%s_physical_region.xml"%(geo_file_name)) 177 178 179 # Apply displacement to mesh 180 ALE.move(dummy_mesh, u) 181 V_mesh = FunctionSpace(dummy_mesh, "CG", 1) v2d = vertex_to_dof_map(V_mesh) 182 183 # Extract boundary vertices 184 dofs = [] 185 186 for facet in facets(dummy_mesh): if boundaries[facet.index()] == 2: # Top boundary 187 188 vertices = facet.entities(0) ``` ``` 189 for vertex in vertices: 190 dofs.append(v2d[vertex]) 191 # Sort and return boundary coordinates 192 193 unique_dofs = np.array(list(set(dofs)), dtype=np.int32) 194 boundary_coords = V_mesh.tabulate_dof_coordinates()[unique_dofs] 195 col = 0 196 boundary_coords_sorted = boundary_coords[np.argsort(boundary_coords[:,col])] 197 return boundary_coords_sorted 198 def DGWeakFormRD(c, cn, vc, Dc, u, J, J_n, F, n, dx, dS, dSM, dt, cellularisation=True): 199 200 201 Construct weak form for reaction-diffusion equations using Discontinuous Galerkin method. 202 203 204 c (Function): Current concentration 205 cn (Function): Previous concentration 206 vc (TestFunction): Test function 207 Dc (float): Diffusion coefficient 208 u (Function): Displacement field J (Expression): Current Jacobian 209 J_n (Expression): Previous Jacobian 210 F (Expression): Deformation gradient n (Expression): Normal vector 213 dx (Measure): Volume measure dS (Measure): Interior facet measure 214 dSM (Measure): Interface measure 215 216 dt (float): Time step 217 cellularisation (bool): Whether to include cell interface terms 218 Returns: 219 Form: Complete weak form for reaction-diffusion equation 220 # Calculate geometric quantities F_{inv} = inv(F) 224 F_{inv_T} = inv(F).T 225 I = Identity(2) 226 eps = sym(grad(u)) 227 # Numerical parameters 228 h = 0.1 # Mesh size parameter 230 sN = 50 # Penalty parameter 231 232 # Modified diffusion tensor including geometric factors alph = J^*(I-2*eps)*Dc 234 235 # Calculate interface terms for DG formulation 236 delt_p = dot(n('+'), alph('+')*n('+')) delt_m = dot(n('-'), alph('-')*n('-')) 237 238 239 # Weights for averaging 240 w_pos = delt_m/(delt_p+delt_m) 241 w_neg = delt_p/(delt_p+delt_m) 242 243 # Average terms for concentration gradients 244 grad\_c\_avg\_term = w\_pos*alph('+')*grad(c)('+')+w\_neg*alph('-')*grad(c)('-') 245 246 247 # Interface penalty parameter gamma = 2*delt_p*delt_m/(delt_p+delt_m) 248 249 250 # Time derivative terms time_deriv = J^*(c-cn)/dt^*vc^*dx+(J-J_n)/dt^*c^*vc^*dx 251 252 253 # Standard diffusion term 254 standard = dot(alph * grad(c), grad(vc)) * dx ``` ``` 255 # Interface terms based on cellularisation flag 256 257 if cellularisation: 258 # Terms for internal cell boundaries consistency = -dot(jump(vc,n),grad_c_avg_term)*dS + dot(jump(vc,n),grad_c_avg_term)*dSM 260 penalty = sN/h^*gamma^*dot(jump(vc, n), jump(c, n))^* dS - sN/h^*gamma^*dot(jump(c, n 261 dSM else: 262 # Terms without internal boundaries 263 consistency = -dot(jump(vc,n),grad_c_avg_term)*dS 264 symmetry = - dot(grad_vc_avg_term, jump(c,n))*dS 265 266 penalty = sN/h*gamma*dot(jump(vc, n), jump(c,n))*dS 267 268 # Combine all terms weakForm = time_deriv + standard + consistency + symmetry + penalty 269 270 271 return weakForm 272 273 # Output file names 274 name = 'simulation_output' # Name of the output xdmf-file 275 geo_file_name = 'cell_doublet_shape_nonDim' # Name of gmsh .geo-file 276 277 def simulation(): 278 Main simulation function implementing a mechanochemical feedback model. 279 280 281 The simulation couples three main components: 282 1. Reaction-diffusion system for GEF-RhoA-Myosin signaling 283 2. Viscoelastic mechanics for cell deformation 3. Mechanochemical feedback through strain 284 285 Uses mixed finite elements: DG for concentrations, CG for displacement. 286 287 # -- 288 289 # Initialize mesh and finite element structures 290 # Convert mesh from Gmsh format to FEniCS XML format 291 if not os.path.exists('%s.xml'%(geo_file_name)): 292 os.system('dolfin-convert %s.msh %s.xml'%(geo_file_name,geo_file_name)) 293 294 295 # Load mesh and domain definitions mesh = Mesh("%s.xml"%(geo_file_name)) 296 boundaries = MeshFunction("size_t", mesh, "%s_facet_region.xml"%(geo_file_name)) 297 subdomains = MeshFunction("size_t", mesh, "%s_physical_region.xml"%(geo_file_name)) 298 299 300 # Save domain definitions for visualization 301 file_results = XDMFFile("subdomains.xdmf") 302 file_results.write(subdomains) file_results = XDMFFile("boundaries.xdmf") 303 304 file_results.write(boundaries) 305 306 # Define measures for integration dx = Measure('dx', domain=mesh, subdomain_data=subdomains) 307 # Volume measure dS_all = Measure('dS', subdomain_data=boundaries) # Surface measure 308 dSM = dS_all(1) # No-flux interface measure 309 310 311 # Initialize domain markers cell1 = selectedSubdomain(subdomains, 1, 0, subdomain_id = 1, degree=0) 312 # Active cell non_opto_cell = selectedSubdomain(subdomains, 0, 1, subdomain_id = 1, degree=0) # Non- 313 photoactivated cell # Normal vector 314 n = FacetNormal(mesh) field 315 # Define finite elements for mixed formulation 316 P1 = FiniteElement('DG', triangle, 1) # DG elements for concentrations ``` ``` P2 = VectorElement ('CG', triangle, 1) # CG elements for displacement element = MixedElement([P1, P1, P1, P2]) # Combined element 319 320 V = FunctionSpace(mesh, element) # Mixed function space 321 322 # Initialize function spaces for output fields 323 # DG spaces for scalar fields 324 dFE_DG0 = FiniteElement("DG", mesh.ufl_cell(), 0) dFE_DG1 = FiniteElement("DG", mesh.ufl_cell(), 1) dFE_CG1 = FiniteElement("CG", mesh.ufl_cell(), 1) 326 dFE_CG2 = FiniteElement("CG", mesh.ufl_cell(), 2) 327 328 329 # Tensor spaces for stress/strain fields 330 TensorSpace_DG0 = TensorFunctionSpace(mesh, "DG", 0) TensorSpace_DG1 = TensorFunctionSpace(mesh, "DG", 1) 331 332 TensorSpace_CG1 = TensorFunctionSpace(mesh, "CG", 1) TensorSpace_CG2 = TensorFunctionSpace(mesh, "CG", 2) 333 334 # Create function spaces W_DG0 = TensorSpace_DG0 # DGO tensor space 336 W_DG1 = TensorSpace_DG1 337 # DG1 tensor space W_CG1 = TensorSpace_CG1 # CG1 tensor space 338 W_CG2 = TensorSpace_CG2 339 # CG2 tensor space 340 341 # Scalar function spaces 342 K_DG0 = FunctionSpace(mesh, dFE_DG0) K_DG1 = FunctionSpace(mesh, dFE_DG1) 343 K_CG1 = FunctionSpace(mesh, dFE_CG1) 344 345 K_CG2 = FunctionSpace(mesh, dFE_CG2) 346 347 # Vector function space for displacement V_CG1 = VectorFunctionSpace(mesh, "CG", 1) 348 349 # Initialize output functions 350 351 # Vector fields (displacement and traction) disp = Function(V_CG1, name='Displacement') 352 353 TractionF = Function(V_CG1, name='Traction') 354 355 # Scalar fields for molecular species GEF = Function(K_DG0, name='GEF') 356 # GEF concentration RhoA = Function(K_DG0, name='RhoA') # RhoA concentration 357 358 Myosin = Function(K_DG0, name='Myosin') # Myosin concentration 359 GEF_inactive = Function(K_DG0, name='GEF inactive') RhoA_inactive = Function(K_DG0, name='RhoA inactive') 360 361 Myosin_inactive = Function(K_DG0, name='Myosin inactive') 362 363 # Scalar fields for mechanics 364 activatedCell = Function(K_DGO, name='Activated Cell') nonOptoCells = Function(K_DGO, name='Non-opto Cells') 365 366 pattern = Function(K_DG0, name='Micropattern') Jacobian = Function(K_DG0, name='detF') 367 368 JacobianPositive = Function(K_DG0, name='detF +') feedbackPositive = Function(K_DG0, name='feedback') 369 hypTangentPositive = Function(K_DGO, name='tanh') traceGreenLagrange = Function(K_DG0, name='trE') 371 traceGreenLagrangePositive = Function(K_DGO, name='trE +') 372 detCauchyStressPositive = Function(K_DG0, name='det(CS) +') 373 374 # Tensor fields for stress and strain 376 Cauchystress = Function(W_DGO, name='Cauchy Stress') Cauchystress_passive = Function(W_DGO, name='Passive Cauchy Stress') 377 378 Pstress = Function(W_DGO, name='Piolal Stress') Pstress_passive = Function(W_DGO, name='Passive Piolal Stress') 379 activeStress = Function(W_DGO, name='Active Stress') 380 381 strainGreenLagrange = Function(W_DGO, name='E (GL Strain)') defGrad_save = Function(W_DGO, name='Deformation Gradient Tensor') 382 CauchyGreenInverse_save = Function(W_DG0, name='Inverse Cauchy Green') ``` ``` 384 385 # Diffusion tensors 386 diffTensor_G = Function(W_DGO, name='alpha_G') diffTensor_R = Function(W_DG0, name='alpha_R') 387 388 diffTensor_M = Function(W_DG0, name='alpha_M') 380 390 # Initialize output file 391 xdmf_file = XDMFFile(path_to_rawData+"%s.xdmf"%(name)) 392 xdmf_file.parameters["flush_output"] = True 393 xdmf_file.parameters["functions_share_mesh"] = True 394 # Define spring constant field for substrate 395 396 kN = KNExpression(p['Ys_N'], p['armWidth_N'], degree=2) 397 398 # Set time discretization parameters DT = 0.5 # Time step size 399 400 dt = Constant(DT) # FEniCS constant for time step 401 t = DT # Current time 402 T = 500 # End time 403 t_{opto} = 5 # photoactivation 404 # Initialize variational problem components 405 dU = TrialFunction(V) # Trial function 406 # Current solution 407 U_tot = Function(V) U_tot_n = Function(V) # Previous solution 408 vG, vR, vM, vu = TestFunctions(V) # Test functions 409 410 # Additional functions for solution storage 411 412 U_tot_save = Function(V) 413 u_save = Function(V_CG1) U_tot_save_n = Function(V) 414 415 # Set initial conditions 416 417 u0 = Constant((0.0, 0.0)) # Zero displacement 418 random.seed() # Set random seed 419 G_0 = Constant(0) # Initial GEF concentration 420 R_0 = Constant(0) # Initial RhoA concentration 421 M_0 = Constant(0) # Initial Myosin concentration 422 # Project initial conditions to appropriate function spaces 423 uG_n = project(G_0, V.sub(0).collapse()) 424 425 uR_n = project(R_0, V.sub(1).collapse()) uM_n = project(M_0, V.sub(2).collapse()) 426 427 u_n = project(u0, V.sub(3).collapse()) 428 429 # Assign initial conditions to solution vector 430 assign(U_tot_n, [uG_n,uR_n,uM_n,u_n]) 431 432 # Split solution for component access uG, uR, uM, u = split(U_tot) # Current solution 433 434 uG_n, uR_n, uM_n, u_n = split(U_tot_n) # Previous solution 435 436 # Initialize arrays for storing results 437 time_array = [] 438 strainEnergyLeft_vs_time = [] 439 strainEnergyRight_vs_time = [] 440 strainEnergyTotal_vs_time = [] 441 boundary_curve_vs_time = [] 442 443 444 445 # Main time stepping loop while t <= T: 446 print("TIME = ", t) 447 448 ``` ``` 450 # Set up tensors for continuum description of the cell layer 451 452 # Define fundamental geometric tensors # Identity tensor I = Identity(2) 453 454 F = I + grad(u) # Deformation gradient tensor 455 J_n = 1+tr(grad(u_n)) # Previous Jacobian (volume change) 456 J = 1 + tr(qrad(u)) # Current Jacobian 457 F_{transpose} = F.T # Transpose of deformation gradient # Approximate inverse of deformation gradient 458 F_{inv} = I - grad(u) C = I - 2*sym(grad(u)) 459 # Right Cauchy-Green tensor C1 = inv(C) # Inverse of Cauchy-Green tensor 460 461 462 # Calculate strain measures eps_n = sym(grad(u_n)) # Previous strain tensor 463 eps = sym(grad(u)) # Current strain tensor 464 trace_n = tr(eps_n) # Previous volumetric strain 465 466 trace = tr(eps) # Current volumetric strain 467 468 469 # Define active stresses from myosin activity 470 471 # Calculate myosin-dependent active stress activeStress\_from\_myosin = p['sig\_a\_N']* tanh(1*uM) # Nonlinear myosin activation 472 473 # Convert to tensor form (isotropic active stress) 474 activeStress_tensor = activeStress_from_myosin*as_tensor([[1, 0], [0, 1]]) 475 476 477 # Constitutive relations for viscoelastic material 478 479 # Total Cauchy stress including active and passive components CS = (activeStress_tensor + # Active stress 480 p['lmbdaE_N'] * tr(eps) * Identity(2) + 481 # Elastic volumetric 2*p['muE_N']*eps + 482 # Elastic deviatoric 483 p['tauc']*p['lmbdaE_N']* (trace-trace_n)/dt*Identity(2) + # Viscous volumetric 2*p['muE_N']*p['tauc']*(eps-eps_n)/dt) 484 # Viscous deviatoric 485 486 # Passive component of Cauchy stress CS_passive = (p['lmbdaE_N'] * tr(eps) * Identity(2) + # Elastic volumetric 487 2*p['muE_N']*eps + 488 # Elastic deviatoric p['tauc']*p['lmbdaE_N']*(trace-trace_n)/dt*Identity(2) + # Viscous volumetric 489 2*p['muE_N']*p['tauc']*(eps-eps_n)/dt) 490 # Viscous deviatoric 491 492 # Calculate positive and negative parts for mechanochemical feedback trace_positive = conditional(gt(trace,0),trace,0)*non_opto_cell # Positive strain 493 trace_negative = conditional(gt(0,trace),trace,0)*non_opto_cell 494 # Negative strain 495 J_{positive} = conditional(gt(J-1,0),J-1,0)*non_opto_cell # Positive volume change 496 detCS_positive = conditional(gt(0,det(CS_passive)),det(CS_passive),0) # Positive stress determinant 497 # Calculate traction force 498 499 tF = kN^*u # Linear spring force tF_mag = kN*sqrt(inner(u,u)) # Magnitude of traction force 500 501 tF_mag_projected = project(tF_mag, K_DG0) # Project for visualization 502 503 # Handle photoactivation event 504 505 506 if t == t_opto: # Initialize photoactivation pattern 507 G_0 = Constant(p['alpha'])*SquareCompartmentDoublet(1,5e-6/p['length_scale']) 508 509 # Set and project new initial conditions after photoactivation 511 uG_n = project(G_0, V.sub(0).collapse()) uR_n = project(R_0, V.sub(1).collapse()) 512 uM_n = project(M_0, V.sub(2).collapse()) 513 514 u_n = project(u0, V.sub(3).collapse()) ``` ``` 515 # Update solution vector 516 517 assign(U_tot_n, [uG_n,uR_n,uM_n,u_n]) uG_n, uR_n, uM_n, u_n = split(U_tot_n) 518 519 520 521 # Define mechanochemical feedback 522 523 # Check cellularisation parameter cellularisation = int(p['cellularisation']) 524 525 526 # Calculate feedback based on positive strain in non-activated cells 527 if cellularisation: feedback = p['fb']*trace_positive*non_opto_cell 528 529 else: feedback = Constant(0) 530 531 532 # Disable feedback if feedback strength is small if p['fb'] < 0.01: 533 534 feedback = Constant(0) 535 536 # Define reaction kinetics for signaling cascade 537 538 539 # GEF activation/inactivation with mechanical feedback React_G = -p['lambda_decay']*uG + feedback 540 # RhoA activation by GEF 541 React_R = p['b']*(uG - uR) 542 543 # Myosin activation by RhoA React_M = p['s']^*(uR - uM) 544 545 546 # Construct weak form of the coupled system 547 548 # Reaction-diffusion equations with DG formulation 540 FcG = DGWeakFormRD(uG,uG_n,vG,p['DG_N'],u,J,J_n,F,n,dx,dS,dSM,dt,cellularisation) -J*(React_G) 550 551 FcR = DGWeakFormRD(uR, uR_n, vR, p['DR_N'], u, J, J_n, F, n, dx, dS, dSM, dt, cellularisation) \\ -J^*(React_R) *vR*dx FcM = DGWeakFormRD(uM,uM_n,vM,p['DM_N'],u,J,J_n,F,n,dx,dS,dSM,dt,cellularisation) -J^*(React_M) \\ 552 *vM*dx 553 554 # Mechanical equilibrium equation 555 F_u = inner(CS, grad(vu))*dx + kN*inner(u, vu)*dx 556 557 # Complete weak form 558 FWF = FcG + FcR + FcM + Fu 559 560 # Configure and solve the nonlinear system 561 562 # Set solver parameters for SNES (nonlinear solver) 563 564 snes_solver_parameters = { "nonlinear_solver": "snes", 565 "snes_solver": { 566 "linear_solver": "lu", # Direct LU solver for linear system 567 'absolute_tolerance': 1e-6, # Convergence criteria 568 569 'relative_tolerance': 1e-6, 570 "maximum_iterations": 20, # Limit iteration count "report": True, # Print convergence info 571 572 "error_on_nonconvergence": True } 573 574 575 576 # Set up nonlinear variational problem 577 dFWF = derivative(FWF, U_tot, dU) # Calculate Jacobian ``` ``` 578 problem = NonlinearVariationalProblem(FWF, U_tot, [], J=dFWF) solver = NonlinearVariationalSolver(problem) 579 580 solver.parameters.update(snes_solver_parameters) 581 info(solver.parameters, False) 582 583 # Solve the system 584 (iter, converged) = solver.solve() 585 586 587 588 589 590 # Prepare and save solution fields for visualization 591 # ----- # Copy current solutions for post-processing 592 U_tot_save.assign(U_tot) U_tot_save_n.assign(U_tot_n) # Current solution 593 594 # Previous solution 595 _uG, _uR, _uM, _u = U_tot_save.split(deepcopy=True) # Split into components 596 597 # Project solution fields onto appropriate function spaces 598 599 # Vector fields (CG1 space) 600 601 disp.assign(project(_u, V_CG1)) # Displacement field TractionF.assign(project(tf, V_CG1)) # Displacement I # Displacement I # Displacement I 602 603 # Molecular species concentrations (DGO space) 604 # GEF concentration 605 GEF.assign(project(_uG, K_DG0)) 606 RhoA.assign(project(_uR, K_DG0)) # RhoA concentration 607 Myosin.assign(project(_uM, K_DG0)) # Myosin concentration 608 609 # Domain markers and geometric quantities (DGO space) activatedCell.assign(project(cell1, K_DG0)) # Activated cell region 610 611 nonOptoCells.assign(project(non_opto_cell, K_DG0)) # Non-photoactivated regions 612 pattern.assign(project(kN, K_DG0)) # Micropattern Jacobian.assign(project(J, K_DG0)) # Volume change 613 614 JacobianPositive.assign(project(J_positive, K_DG0)) # Positive volume change feedbackPositive.assign(project(feedback, K_DG0)) # Mechanical feedback 615 616 # Strain measures (DGO space) 617 618 traceGreenLagrange.assign(project(trace, K_DG0)) # Volumetric strain traceGreenLagrangePositive.assign(project(trace_positive, K_DG0)) 619 # Positive strain 620 detCauchyStressPositive.assign(project(detCS_positive, K_DG0)) # Positive stress 621 622 # Stress and strain tensors (DGO tensor space) 623 Cauchystress.assign(project(CS, W_DG0)) # Total Cauchy stress 624 Cauchystress_passive.assign(project(CS_passive, W_DG0)) # Passive stress # Active stress activeStress.assign(project(activeStress_tensor, W_DG0)) 625 626 strainGreenLagrange.assign(project(eps, W_DG0)) # Strain tensor defGrad_save.assign(project(F, W_DG0)) # Deformation gradient 627 628 CauchyGreenInverse_save.assign(project(C1, W_DG0)) # Inverse Cauchy-Green tensor 629 630 # Write fields to XDMF file for visualization 631 632 # Vector fields 633 xdmf file.write(disp, t) # Displacement 634 635 xdmf_file.write(TractionF, t) # Traction 636 # Molecular concentrations 637 638 xdmf_file.write(GEF, t) # GEF # RhoA xdmf_file.write(RhoA, t) 639 xdmf_file.write(Myosin, t) 640 # Mvosin 641 642 # Domain markers and geometric quantities xdmf_file.write(activatedCell, t) # Activated cells 643 ``` ``` xdmf_file.write(nonOptoCells, t) # Non-photoactivated cells 644 xdmf_file.write(pattern, t) # Micropattern 645 xdmf_file.write(Jacobian, t) # Volume change 646 # Positive volume change xdmf_file.write(JacobianPositive, t) 647 648 xdmf_file.write(feedbackPositive, t) # Mechanical feedback 640 650 # Strain measures xdmf_file.write(traceGreenLagrange, t) # Total strain 651 xdmf_file.write(traceGreenLagrangePositive, t) # Positive strain 652 xdmf_file.write(detCauchyStressPositive, t) # Positive stress 653 654 655 # Stress and strain tensors 656 xdmf_file.write(Cauchystress, t) # Total stress xdmf_file.write(Cauchystress_passive, t) # Passive stress 657 xdmf_file.write(activeStress, t) # Active stress 658 # Strain tensor xdmf_file.write(strainGreenLagrange, t) 659 xdmf_file.write(defGrad_save, t) # Deformation gradient 660 xdmf_file.write(CauchyGreenInverse_save, t) 661 # Inverse Cauchy-Green 662 663 # Calculate and store derived quantities 664 665 # Store current time 666 667 time_array.append(t) 668 # Calculate strain energy in different regions 669 dx1 = Measure('dx', domain=mesh, subdomain_data=subdomains, subdomain_id=1) 670 strainEnergyLeft = calculateStrainEnergy(u, kN, dx1) # Left cell 671 672 673 dx2 = Measure('dx', domain=mesh, subdomain_data=subdomains, subdomain_id=2) strainEnergyRight = calculateStrainEnergy(u, kN, dx2) # Right cell 674 675 strainEnergyTotal = calculateStrainEnergy(u, kN, dx) # Total system 676 677 678 # Extract boundary curve for shape analysis boundary_curve = get_boundary_of_deformed_mesh(_u, geo_file_name) 679 680 # Store energy and boundary data 681 strainEnergyLeft_vs_time.append(strainEnergyLeft) 682 strainEnergyRight_vs_time.append(strainEnergyRight) 683 684 strainEnergyTotal_vs_time.append(strainEnergyTotal) 685 boundary_curve_vs_time.append(boundary_curve) 686 687 # Update time step and solution 688 689 690 t = t + DT # Increment time U_tot_n.assign(U_tot) 691 # Store current solution for next step 692 693 694 # Save simulation data to files 695 696 # Create dictionary of energy data 697 outputDict = { 'time': np.array(time_array), 698 'strainEnergyLeft': np.array(strainEnergyLeft_vs_time), 699 'strainEnergyRight': np.array(strainEnergyRight_vs_time), 700 'strainEnergyTotal': np.array(strainEnergyTotal_vs_time) 701 702 } 703 704 # Save energy data to CSV pd.DataFrame.from_dict(data=outputDict).to_csv(path_to_rawData+'strainEnergy.csv', header=True 705 ) 706 707 # Save boundary curve data to NPZ file 708 np.savez(path_to_rawData + 'boundary_curve.npz', ``` ``` boundary_curve=boundary_curve_vs_time, time=np.array(time_array)) time=np.array(time_array)) time=np.array(time_array) time=np ``` #### References - [1] Richter, T., 2017. Fluid-structure interactions: models, analysis and finite elements, volume 118. Springer. - [2] Arnold, D. N., 1982. An interior penalty finite element method with discontinuous elements. *SIAM journal on numerical analysis* 19:742–760. - [3] Wheeler, M. F., 1978. An elliptic collocation-finite element method with interior penalties. *SIAM Journal on Numerical Analysis* 15:152–161. - [4] Babuška, I., 1973. The finite element method with penalty. *Mathematics of computation* 27:221–228. - [5] Ern, A., A. F. Stephansen, and P. Zunino, 2009. A discontinuous Galerkin method with weighted averages for advection-diffusion equations with locally small and anisotropic diffusivity. IMA Journal of Numerical Analysis 29:235–256. - [6] Douglas, J., and T. Dupont, 1976. Interior penalty procedures for elliptic and parabolic Galerkin methods. *In* Computing methods in applied sciences, Springer, 207–216. - [7] Nitsche, J., 1971. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind. *In* Abhandlungen aus dem mathematischen Seminar der Universität Hamburg. Springer, volume 36, 9–15. - [8] Kamps, D., J. Koch, V. O. Juma, E. Campillo-Funollet, M. Graessl, S. Banerjee, T. Mazel, X. Chen, Y. W. Wu, S. Portet, A. Madzvamuse, P. Nalbant, and L. Dehmelt, 2020. Optogenetic Tuning Reveals Rho Amplification-Dependent Dynamics of a Cell Contraction Signal Network. Cell Reports 33. - [9] Geuzaine, C., and J.-F. Remacle, 2008. Gmsh: a three-dimensional finite element mesh generator with built-in pre-and post-processing facilities. - [10] Staddon, M. F., E. M. Munro, and S. Banerjee, 2022. Pulsatile contractions and pattern formation in excitable actomyosin cortex. *PLoS computational biology* 18:e1009981. - [11] Citi, S., and J. Kendrick-Jones, 1987. Regulation of non-muscle myosin structure and function. *Bioessays* 7:155–159. - [12] Garcia-Mata, R., E. Boulter, and K. Burridge, 2011. The invisible hand: regulation of RHO GTPases by RHOGDIs. Nature reviews Molecular cell biology 12:493–504. - [13] Seabra, M. C., 1998. Membrane association and targeting of prenylated Ras-like GTPases. *Cellular signalling* 10:167–172. - [14] Somlyo, A. P., and A. V. Somlyo, 2000. Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. The Journal of physiology 522:177–185. - [15] Lee, C.-S., C.-K. Choi, E.-Y. Shin, M. A. Schwartz, and E.-G. Kim, 2010. Myosin II directly binds and inhibits Dbl family guanine nucleotide exchange factors: a possible link to Rho family GTPases. *Journal of Cell Biology* 190:663–674. - [16] Besser, A., and U. S. Schwarz, 2007. Coupling biochemistry and mechanics in cell adhesion: A model for inhomogeneous stress fiber contraction. *New Journal of Physics* 9:1–27. - [17] Andersen, T., D. Wörthmüller, D. Probst, I. Wang, P. Moreau, V. Fitzpatrick, T. Boudou, U. Schwarz, and M. Balland, 2023. Cell size and actin architecture determine force generation in optogenetically activated cells. *Biophysical Journal* 122:684–696. - [18] Valon, L., A. Marín-Llauradó, T. Wyatt, G. Charras, and X. Trepat, 2017. Optogenetic control of cellular forces and mechanotransduction. *Nature Communications* 8. - [19] Kowalczyk, M., D. Kamps, Y. Wu, L. Dehmelt, and P. Nalbant, 2022. Monitoring the Response of Multiple Signal Network Components to Acute Chemo-Optogenetic Perturbations in Living Cells. ChemBioChem 23:e202100582. - [20] Valon, L., F. Etoc, A. Remorino, F. Di Pietro, X. Morin, M. Dahan, and M. Coppey, 2015. Predictive Spatiotemporal Manipulation of Signaling Perturbations Using Optogenetics. *Biophysical Journal* 109:1785–1797. - [21] Banerjee, S., and M. C. Marchetti, 2012. Contractile stresses in cohesive cell layers on finite-thickness substrates. *Physical Review Letters* 109:1–5. - [22] Beguerisse-Díaz, M., R. Desikan, and M. Barahona, 2016. Linear models of activation cascades: Analytical solutions and coarse-graining of delayed signal transduction. *Journal of the Royal Society Interface* 13. - [23] Nishikawa, M., S. R. Naganathan, F. Jülicher, and S. W. Grill, 2017. Controlling contractile instabilities in the actomyosin cortex. *Elife* 6:e19595. - [24] Michaux, J. B., F. B. Robin, W. M. McFadden, and E. M. Munro, 2018. Excitable RhoA dynamics drive pulsed contractions in the early C. elegans embryo. *Journal of Cell Biology* 217:4230–4252. - [25] Alnæs, M., J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M. E. Rognes, and G. N. Wells, 2015. The FEniCS project version 1.5. Archive of Numerical Software 3.