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Abstract

Cellular force generation and transmission are fundamental processes driving cell migration, division, tissue mor-
phogenesis, and disease progression. Traction Force Microscopy (TFM) and Monolayer Stress Microscopy (MSM)
have emerged as essential techniques for quantifying these mechanical processes, but current software solutions
are fragmented across multiple platforms with varying degrees of usability and accessibility. Here, we present
napariTFM, a comprehensive open-source plugin for the napari image viewer that integrates state-of-the-art al-
gorithms for both TFM and MSM analysis within an intuitive graphical user interface. The software implements
TV-L1 optical flow for displacement analysis, Fourier Transform Traction Cytometry (FTTC) for force reconstruc-
tion, and finite element methods for stress calculation, supporting both single-frame and time-series analysis of 2D
microscopy data. Systematic validation using synthetic datasets with known ground truth values demonstrated
excellent accuracy, with correlation coefficients above 0.9 for most situations. Real-time parameter adjustment and
immediate visualization capabilities enable interactive optimization of analysis parameters and quality assessment
during processing. Finally, we demonstrate the software’s capabilities through analysis of optogenetic contractility
experiments in cell doublets. napariTFM addresses critical gaps in the cellular mechanics software ecosystem by
combining algorithmic rigor with practical usability, providing the research community with an accessible platform
for quantitative studies of cellular force generation and transmission.


https://doi.org/10.1101/2025.10.14.682385
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2025.10.14.682385; this version posted October 20, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

1 Introduction

Cellular force generation and transmission are funda-
mental processes that drive and regulate critical biolog-
ical functions including cell migration, division, tissue
morphogenesis, and disease progression [II, 2, B]. Over
the past decades, Traction Force Microscopy (TFM)
and Monolayer Stress Microscopy (MSM) have emerged
as powerful techniques for quantifying these mechanical
processes, enabling researchers to measure cell-substrate
forces and internal cellular stresses with high spatial and
temporal resolution [4, [5] [6].

TFM reconstructs cellular traction forces by mea-
suring substrate deformations caused by adherent cells
on elastic substrates embedded with fiducial markers
[7]. The technique typically involves comparing images
of fluorescent beads in stressed (cell-attached) and re-
laxed (cell-removed) states, followed by computational
reconstruction of force fields. Several computational
approaches have been developed for this inverse prob-
lem, including Fourier Transform Traction Cytometry
(FTTC) [8], Boundary Element Methods (BEM) [9], and
finite element approaches [10], each with distinct ad-
vantages and limitations depending on the experimental
context. MSM extends this analysis by calculating in-
ternal stress distributions within cell monolayers [6], [1T].
By modeling cellular tissues as thin elastic sheets, MSM
enables determination of intercellular force transmission
and stress propagation. Important contributions from
the biomechanics community have advanced our under-
standing of these methods’ capabilities and limitations,
including developments in 4D TFM [12], quantification
of active versus resistive stresses [I3], and theoretical
frameworks for stress inference in confluent tissues [14].

Despite the widespread adoption of these techniques,
significant barriers limit their accessibility to the broader
biological research community. Current software solu-
tions are fragmented across multiple platforms with vary-
ing degrees of usability, documentation quality, and com-
putational requirements. The TFM software ecosystem
includes diverse implementations: ImageJ plugins such
as Qingzong Tseng’s PIV and FTTC implementations
[15], JEasyTFM [16] and iTACS [17], the stand-alone
tool Cellogram [I8] for reference-free real-time analysis,
MATLAB tools such as TFMLAB [19] for 4D TFM ca-
pabilities or p-inferforce [9], implementing both FTTC
and BEM algorithms, and Python tools such as pyTFM
[20] and our own previous tool batchTFM [21]. For MSM
analysis, pyTFM and iTACS are, to our knowledge, the
only freely available solutions.

However, several challenges remain for researchers
seeking to implement these techniques. First, the frag-
mented software landscape requires users to switch be-
tween different platforms and programming environ-

ments for complete analysis workflows. Second, select-
ing appropriate algorithmic parameters (regularization
values, mesh densities, filtering parameters) requires sig-
nificant expertise and often lacks real-time visual feed-
back during optimization. Third, processing time-series
datasets at scale demands robust batch processing capa-
bilities that many existing tools lack. Finally, researchers
without programming expertise face substantial barriers
to entry, limiting the techniques’ adoption despite their
biological value.

To this end, we developed napariTFM, a compre-
hensive TFM/MSM napari plugin that addresses these
critical gaps through an intuitive graphical user inter-
face, immediate feedback on parameter selection ef-
fects, and powerful batch processing capabilities for
high-throughput experiments. The plugin leverages the
Python-based napari image viewer [22], which is emerg-
ing as a powerful platform for biological image analysis
with active community development and an extensive
plugin ecosystem for comprehensive microscopy work-
flows.

The plugin supports both single-frame and time-series
analysis of 2D microscopy images. napariTFM imple-
ments state-of-the-art algorithms including TV-L1 opti-
cal flow for displacement analysis, FTTC for force recon-
struction, and finite element methods for stress calcula-
tion.

2 Methods

2.1 Assumptions and Limitations

napariTFM addresses the methodological complexities of
force microscopy by making established computational
approaches accessible, transparent, and easy to use for
biologists conducting diverse experiments. The plugin
implements well-established algorithms including TV-L1
optical flow for displacement analysis [23], FTTC for
force reconstruction [ [10], and finite element methods
for stress calculation [6, 20]. We chose these specific
methods based on their favorable balance of computa-
tional efficiency, robustness to noise, and ability to han-
dle the range of displacement magnitudes encountered
in typical biological experiments. However, we acknowl-
edge that alternative approaches may be preferable in
specific contexts. These methods rely on fundamental
assumptions about substrate and cellular material prop-
erties (linear elasticity, homogeneity), measurement con-
ditions (2D imaging of inherently 3D systems), and force
balance (which may not hold locally even when satis-
fied globally). Different algorithmic approaches handle
these challenges differently, with trade-offs between com-
putational efficiency, noise robustness, and accuracy un-
der various experimental conditions [7, [10]. Important
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considerations for users include the effects of spherical
aberration at image edges in large monolayers, and the
current implementation of boundary conditions for MSM
which work only when cell borders are clearly visible. Fu-
ture versions will address boundary conditions for conflu-
ent layers without visible borders and could incorporate
multiple algorithmic options with guidance for users on
method selection.

2.2 Software Architecture and Imple-
mentation

napariTFM is implemented as a Python 3.6+ package
designed to integrate with the napari image viewer as
an optional plugin. The complete analysis workflow
from raw input data through preprocessing, displace-
ment analysis, force calculation, and stress analysis is
outlined in Figure 1. The software provides both a
graphical user interface through napari (Figure 2) and a
standalone Python library for programmatic access. The
core computational components utilize established open-
source packages including NumPy for array operations,
SciPy for scientific computing, OpenCV for image pro-
cessing, scikit-image for automated detection and drift
correction, and matplotlib for visualization. The plugin
organizes data using a hierarchical structure where each
experimental field of view is represented as a frame con-
taining multiple image layers. Input images (substrate in
tensed and relaxed states, and optional cell images) are
stored as separate layers, with analysis outputs added
as additional layers during processing. Cell masks are
created through simple threshold segmentation of cell
images or can be provided externally as TIFF files.

2.3 Displacement Field Calculation

Substrate deformations are calculated using the TV-L1
optical flow algorithm [24] 25], which is particularly well-
suited for TFM analysis due to its ability to handle
steep gradients in displacement fields, large displace-
ments through multi-scale analysis, and provision of sub-
pixel accuracy while being robust to intensity variations.
The inherent smoothness constraint in TV-L1 optical
flow makes it particularly robust to imperfect experimen-
tal conditions such as bead aggregates or non-uniform
bead densities, reducing the need for post-processing
steps like outlier removal that are sometimes necessary
with other displacement tracking methods. However,
users should be aware that this smoothness constraint
can also over-regularize displacement fields in regions
with genuinely high deformation gradients.

The TV-L1 algorithm minimizes an energy functional
that combines brightness constancy assumptions (beads
maintain intensity) with total variation regularization

(smooth displacement fields) and additional constraints
for numerical stability. It uses a multi-scale pyramid ap-
proach where images are analyzed at different resolution
levels. Large displacements are captured at coarse scales
while fine details are refined at higher resolutions. Key
algorithm parameters include lambda (\) which controls
the balance between data fitting and smoothness (typ-
ical values 0.01-1.0, with lower values providing more
smoothing for noisy data and higher values preserving
detail for clear images), pyramid scales (number of res-
olution levels, typically 3-5), warps (number of iterative
refinements per scale), epsilon (stopping criterion for op-
timization), and scale step (factor between pyramid lev-
els, typically 0.5-0.8). Global image drift correction is
performed using phase cross-correlation of the entire im-
age pair, followed by image alignment and cropping to
the overlapping field of view.

2.4 Traction Force Reconstruction

Traction forces are computed using the Fourier Trans-
form Traction Cytometry (FTTC) method, using the
implemtation by Blumberg et al. [I0]. FTTC is com-
putationally efficient due to the Fast Fourier Transform,
typically processing images in seconds, making it well-
suited for batch processing of large time-series datasets.

Linear elasticity theory relates substrate deformations
(u) and cellular tractions (t) through:

u=Got (1)

where G represents the Green’s tensor for a linearly
elastic substrate and ® denotes convolution. By exploit-
ing the convolution theorem, this relationship simplifies
in Fourier space to:

(k) = G(k)t(k) (2)

where hats indicate Fourier transforms. The Green’s
tensor for a semi-infinite elastic substrate follows the
Boussinesq equations, with optional corrections for finite
substrate thickness when analyzing larger cell patches.

For regularization, napariTFM uses automatic Gen-
eralized Cross-Validation (GCV) to find the optimal
regularization parameter A when auto-GCV is selected.
When manual regularization is chosen, the user can spec-
ify the regularization parameter directly. The FTTC
algorithm uses Tikhonov regularization to solve the ill-
posed inverse problem of reconstructing forces from dis-
placement measurements. When comparing datasets
quantitatively, it is essential to maintain consistent regu-
larization parameters to ensure that differences in recov-
ered forces reflect biological variation rather than anal-
ysis artifacts. However, if substrate rigidity differs be-
tween conditions, the regularization parameter should be
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Figure 1: napariTFM workflow and data structure. Schematic overview of the napariTFM analysis pipeline showing
the flow from raw input data (beads, reference, and optional cell images) through preprocessing, displacement
analysis using TV-L1 optical flow, force calculation via FTTC (Fourier Transform Traction Cytometry), and stress
analysis using MSM (Monolayer Stress Microscopy). Orange boxes indicate input data, blue boxes show analysis
steps and their internal data structures, and green boxes indicate output files generated at each step.
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Figure 2: napariTFM user interface in napari. Screenshot of the napariTFM plugin integrated within the napari
image viewer, showing: (1) the main image display with fluorescent bead data and overlaid displacement vectors,
(2) napari’s layer controls, (3) global parameters panel, (4) tabs that access controls for different analysis steps, (5)
data input panel, (6) local parameters for the selected step, and (7) action controls (analyze, save data, preview
etc.). The interface provides real-time parameter adjustment and visualization of results.
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adjusted accordingly as the optimal regularization de-
pends on the mechanical properties of the system. A
Lanczos filter with user-defined exponent is applied for
additional noise reduction, with higher exponents pro-
viding stronger smoothing at the cost of spatial detail.
The choice of Lanczos exponent, like the regularization
parameter, should remain consistent within comparative
studies.

2.5 Monolayer Stress Microscopy Imple-
mentation

Stress fields in cell monolayers are calculated using the
Monolayer Stress Microscopy algorithm developed by
Tambe et al. [6], using the implementation from the
pyTFM package [20].

The cell monolayer is modeled as a two-dimensional
linear elastic sheet in contact with the matrix, where
external tractions are balanced by internal stresses.

In the absence of inertial forces, tractions and stresses
are balanced according to:

0020 00y,
e = Ox Oy ®)
0oyy 00y,
4 = Lyz | YOy 4
y oz Oy “)

where 0,., o0y, are normal stresses in z- and y-
directions, oy, is the shear stress, and t, ¢, are traction
components.

This differential equation is solved using a finite ele-
ment method where the cell patch is modeled using tri-
angular mesh elements generated with gmsh. Gmsh pro-
vides user-controllable mesh parameters including den-
sity and mesh algorithms and also provides mesh quality
metrics. Each node is loaded with forces equal in mag-
nitude but opposite in direction to the local tractions.
Nodal displacements are calculated by solving:

d=K'f (5)

where d are nodal displacements, f are nodal forces,
and K~! is the inverse stiffness matrix. The nodal dis-
placements are converted to strains by taking spatial
derivatives, and stresses are calculated using the stress-
strain relationship for a linearly elastic two-dimensional
material. FEM calculations are performed using the
SolidsPy Python package.

The FEM algorithm assumes zero net forces and
torques on the cell patch. Since TFM ensures global but
not local force balance, unbalanced forces and torques
are corrected: net forces are removed by subtracting the
sum of all force vectors from each node, and net torques
are corrected by rotating all force vectors by small angles
until zero torque is achieved.

Zero rigid translation and rotation constraints are ap-
plied to make the system uniquely solvable. Rather than
fixing individual nodes, constraints are formulated glob-
ally as:

(6)
(7)
(8)

where 74, 7, are distance components from nodes to
the grid center of mass. These constraints are incor-
porated into the system and solved numerically using
least-squares minimization.

The Young’s modulus is set to 1 Pa and Poisson’s ra-
tio to 0.5, as the stress calculation is independent of the
actual Young’s modulus value and only negligibly influ-
enced by Poisson’s ratio [II]. The triangular mesh den-
sity and quality can be adjusted through user-defined
parameters, allowing optimization for different cell ge-
ometries and experimental and computational require-
ments.

2.6 Synthetic Data Generation for Vali-
dation

To validate the accuracy of napariTFM’s displacement
analysis, traction force reconstruction, and stress calcu-
lation algorithms, we generated synthetic datasets with
known ground truth values for systematic comparison.

For traction force microscopy validation, we utilized
the DirectMethod repository from Blumberg et al. [10],
which provides a forward simulation approach to gen-
erate substrate displacements from known force fields.
We programmed two force dipoles with identical centers
and 90-degree rotation relative to each other, mimick-
ing the characteristic force field pattern of a cell doublet
on H-shaped micropatterns, similar to the experimental
conditions described in our previous work [26]. The syn-
thetic force fields were designed with varying magnitudes
(low, medium, and high) to test algorithm performance
across different force scales. To create realistic synthetic
bead images, we used OpenCV to deform experimental
fluorescent bead images according to the displacement
maps generated by the forward simulation.

For monolayer stress microscopy validation, we em-
ployed two complementary approaches. First, we used an
analytically solved problem consisting of a square plate
under uniform loading, where both the internal stress
distribution (constant within the plate) and boundary
forces are known exactly, providing a rigorous bench-
mark for algorithm accuracy.
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Second, we employed a finite element method (FEM),
inspired by the modeling approach in [27), 28] to gener-
ate realistic stress maps and corresponding traction force
distributions that capture the mechanical behavior of mi-
grating cells. This approach enables validation under
more complex and biologically relevant conditions. In
this framework, cells are modeled as a two-dimensional
active elastic solid via

heEe

h.E 1Y
i = ——— | eij + ——eri; ———FPodij ,
0ij T+, <sj+1_ycekk ]>+2(1_Vc) 00ij
(9)

where the first term represents the constitutive relation
of a linear elastic material, with o;; and ¢;; denoting
the Cauchy stress and strain tensor, respectively. The
second term introduces an active contractile stress with
constant contractility Py. The cell layer is further char-
acterized by the Young’s modulus F., Poisson’s ratio v,
and effective contractile thickness h.. To increase geo-
metric and mechanical complexity, the cell is assumed
to adhere at 19 distinct adhesive islands positioned near
the periphery similar to [29]. Force balance is then given
by

0;0i5 = Ys(x)u;;, (10)

where Y,(x) # 0 at adhesion sites (and vanishes other-
wise), describing the spring stiffness of the elastic sub-
strate, and u is the substrate displacement field [30]. For
the parametrization of this continuum model, we closely
follow the parameters listed in the Supporting Informa-
tion of [29]. In our FEM simulations, an initially round
cell undergoes isotropic contraction until the force bal-
ance in is reached. The resulting cell shape
and internal stress patterns are shown in Figure 4C (up-
per left row).

3 Results

We systematically validated napariTFM’s performance
across all major analysis components using synthetic
datasets with known ground truth values, followed by
demonstration of its capabilities on real experimental
data. The validation encompassed displacement field
calculation, traction force reconstruction, and monolayer
stress microscopy analysis, confirming the software’s ac-
curacy and reliability for quantitative cellular force mea-
surements.

3.1 Displacement Analysis Performance

The displacement field reconstruction achieved excellent
accuracy across all tested scenarios (Figure 3A), with
correlation coefficients between calculated and ground
truth displacement of ~0.95 for low displacement sce-
narios and above 0.98 for medium and high displacement

conditions, demonstrating robust performance across bi-
ologically relevant deformation magnitudes.

3.2 Traction Force Reconstruction Accu-

racy

Force reconstruction showed high fidelity to ground truth
data (Figure 3B), with correlation coefficients ranging
from 0.9 to 0.98 across different force magnitudes. Strain
energy analysis (Figure 3C) revealed excellent quantita-
tive agreement for medium and high displacement sce-
narios, with normalized strain energy ratios clustering
tightly around the ideal value of 1.0. The low displace-
ment scenario showed reduced accuracy (=0.79), repre-
senting a limiting case where signal-to-noise ratio chal-
lenges affect force magnitude recovery.

3.3 Monolayer Stress Microscopy Per-
formance

MSM validation using analytical solutions (Figure 4A,B)
achieved correlation coefficients above 0.98 for all stress
tensor components (0yz, Tyy; Onormal), With normalized
stress ratios very close to 1. FEM simulation validation
(Figure 4C,D) with realistic cell-like geometries yielded
correlation coefficients between 0.85-0.91, confirming ro-
bust performance under complex stress distributions.

3.4 Example Application: Optogenetic
Stimulation of Cell Contractility in
Cell Doublets

Time-series analysis of optogenetic contractility exper-
iments demonstrated napariTFM’s capability for dy-
namic biological applications (Figure 5). The experimen-
tal data was previously published [26] and reanalyzed
here using napariTFM to demonstrate the software’s ca-
pabilities. Following stimulation, traction force magni-
tude increased dramatically for the duration of stimula-
tion and relaxed again after approximately 20 minutes.
MSM analysis revealed corresponding changes in inter-
nal stress distributions, showing how contractile forces
propagate spatially through the cell doublet.
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Figure 3: Validation of displacement analysis and traction force calculation. (A) Displacement field validation
across three scenarios (low, mid, high displacement magnitudes). Top row shows ground truth displacement fields,
bottom row shows calculated results using napariTFM’s TV-L1 optical flow algorithm. Vector overlays indicate
displacement direction and magnitude. Bar chart shows correlation coefficients between calculated and ground
truth data. (B) Traction force validation using FTTC algorithm. Layout as in (A), with ground truth (top) and
calculated (bottom) traction fields. (C) Strain energy analysis comparing ground truth versus calculated values
(left) and normalized ratios (right). The dashed red line indicates perfect agreement (calculated/ground truth —
1.0).
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Figure 4: Validation of Monolayer Stress Microscopy (MSM) analysis. (A) Square plate analytical validation using
a simple geometric test case with known analytical solution. Stress tensor components (0zq, Oyy; Tnormal) are
shown for ground truth (top) and calculated (bottom) fields. Bar chart shows correlation coefficients between
calculated and ground truth stress components. (B) Avgrage stress comparison and normalized ratios for square
plate validation. The dashed red line indicates perfect agreement (calculated/ground truth = 1.0). (C) FEM-
simulation validation using computational data from a finite element model that resembles a snapshot of a migrating
cell. Layout as in (A). (D) Average stress comparison and normalized ratios for FEM-simulation validation.
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Doublet TFM Analysis: Force and Stress Evolution
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Figure 5: Cell doublet TFM analysis demonstrating temporal evolution of forces and stress. Raw microscopy
data from [26] was reanalyzed using napariTFM. Top row shows traction force vectors overlaid on cell images
at six time points, with force magnitude color-coded. Middle row displays corresponding average normal stress
fields calculated using MSM, showing the spatial distribution of internal cellular stresses. Bottom row presents
quantitative time-series analysis: strain energy evolution (left) and spatially-averaged stress over time (right), with
red dots highlighting the selected visualization time points. Scale bar: 10 pm.
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4 Discussion

napariTFM addresses a critical need in the cellular me-
chanics community by providing a comprehensive, user-
friendly platform that integrates state-of-the-art algo-
rithms for both traction force microscopy and monolayer
stress microscopy. Our validation results demonstrate
that the software achieves excellent accuracy across the
full range of biologically relevant force and displace-
ment magnitudes, with correlation coefficients consis-
tently above 0.9 for most scenarios.

The integration within the napari ecosystem repre-
sents a significant advantage for the broader microscopy
community, leveraging napari’s established plugin archi-
tecture and intuitive interface design. The real-time pa-
rameter adjustment and immediate visualization capa-
bilities address a common limitation of batch-processing
tools, allowing users to optimize analysis parameters in-
teractively and assess data quality during processing.

Our synthetic data validation revealed important per-
formance characteristics across different experimental
conditions. The reduction in accuracy for low displace-
ment scenarios (normalized strain energy ratio of 0.79)
reflects the fundamental signal-to-noise limitations in-
herent to TFM analysis. This finding is consistent with
previous studies and highlights the importance of exper-
imental design considerations, such as substrate stiffness
selection and imaging quality optimization, for achieving
optimal force measurement accuracy.

While napariTFM’s primary contribution lies in inte-
grating established methods into an accessible platform,
it is important to acknowledge the algorithmic choices
and their limitations. Our validation demonstrates the
accuracy of specific implementations: TV-L1 optical
flow, FTTC, and finite element MSM. We selected these
methods for their favorable balance of computational ef-
ficiency, noise robustness, and ability to handle typical
biological displacement magnitudes, but alternative ap-
proaches (e.g., PIV, BEM) may offer advantages in spe-
cific contexts [9, [7]. Future versions could incorporate
multiple algorithmic options with guidance for method
selection based on experimental requirements.

All force microscopy methods rely on assumptions that
users must understand when interpreting results. TFM
assumes linear elastic substrate behavior of the substrate
to relate measured displacements to cellular traction
forces, which means that substrates with more complex
material properties such as matrigel or collagen gels, re-
quire different methods. For MSM, while the formulation
invokes elastic sheet theory, the calculated stress distri-
butions are largely independent of the assumed elastic
modulus and only negligibly influenced by Poisson’s ra-
tio [I1I], making the elasticity assumption less restrictive
than it may appear. Standard 2D analysis captures pro-

jections of 3D mechanical systems, potentially missing
out-of-plane forces. Regularization in FTTC represents
critical trade-offs between noise suppression and spatial
detail preservation; napariTFM’s real-time visualization
allows interactive assessment, but optimal parameters
ultimately require biological judgment about expected
force patterns. MSM requires force balance corrections
because TFM ensures global but not local equilibrium.
The magnitude of these corrections can serve as a quality
metric for the analysis.

Important practical considerations include distin-
guishing between isolated cells and confluent monolay-
ers, which require different analytical approaches and
boundary conditions. Our current MSM implementation
works only when cell borders are clearly defined. Bound-
ary conditions for truly confluent tissues without visi-
ble cell-cell boundaries will be addressed in future ver-
sions. Additionally, spherical aberration at image edges
and photobleaching in time-lapse experiments can affect
displacement accuracy, emphasizing that careful exper-
imental design remains essential for high-quality force
microscopy regardless of computational methods.

Current limitations include the restriction to 2D anal-
ysis and the computational requirements for large-scale
time-series datasets. Future developments will focus
on extending the framework to 2.5D and 3D traction
force microscopy, implementing GPU acceleration for im-
proved processing speed, and developing specialized tools
for high-throughput screening applications.

napariTFM fills an important gap in the TFM and
MSM software ecosystem by combining an interactive
and user-friendly graphical interface with state-of-the-
art algorithms. Its open-source nature and integration
within the napari platform position it as a valuable re-
source for advancing quantitative studies of cellular force
generation and transmission across diverse biological sys-
tems.

5 Code Availability

napariTFM is open-source software available at https:
//github.com/ArturRuppel/napariTFM (GNU General
Public License) and can be installed by following the
installation procedure outlined in the readme. Synthetic
validation datasets and analysis scripts are included in
the repository.
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