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Curvature instability of an active gel growing on a wavy membrane
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Cell shape changes are largely controlled by the actin cytoskeleton, a dynamic filament network
beneath the plasma membrane. Several cell types can form extended free-standing protrusions
not supported by an extracellular substrate or matrix, and regulated by proteins that modulate
cytoskeletal dynamics in a way sensitive to the curvature of the cell membrane. We develop a
theoretical model for the mechanics of a free-standing viscous actin network growing on a corrugated
membrane. The model couples the dynamics of the viscous active gel with membrane deformation
and the recruitment of curvature-sensitive actin nucleators. We show that an actin layer polymerising
uniformly on the membrane always exerts a stabilising effect that reduces membrane deformation.
However, curvature-sensitive actin nucleator proteins can render the membrane linearly unstable,
depending on the interplay between membrane and actin dynamics, giving rise to spontaneous

membrane deformation which could initiate extended free-standing cellular protrusion.

Cell shape change is essential for a wide range of cellu-
lar functions, including migration and morphogenesis. It
relies on the mechanical stress generated by the cytoskele-
ton on the cell membrane [1, 2]. Actin polymerisation at
the membrane gives rise to dynamic structures such as
lamellipodia, filopodia and membrane ruffles [3, 4]. At
the edge of adherent cells (in the lamellipodium) actin
polymerisation against the membrane causes an actin
retrograde flow, which experiences friction with the sub-
strate mediated by adhesion proteins such as integrins,
leading to a pushing force on the cell front [5, 6]. Remark-
ably, many cell types such as immune cells can generate
thin and extended (> 10um long) free-standing pseu-
dopods important for sensing and navigating through
complex physiological environments [7]. Such actin-filled
protrusions, which bear similarities with those observed
in reconstituted in-vitro actin/membrane systems [8], are
not connected to any extracellular structures and must
rely on purely internal stress within the actin gel in a way
that is not understood.

Active gels growing on surfaces of constant curvature
exert a compressive force on the surface whether growing
on the convex or concave side of it [9-11]. This is a second
order effect, hence not sensitive to the sign of the curvature
and unlikely to trigger shape instability. Actin retrograde
flow in adherent cells can trigger shape instability [12]
and even symmetry breaking and waves for non-linear
adhesion forces [13], but this requires substrate friction.
Here we study the stability of a free-standing actin gel
growing on a deformable membrane using the theory of
active gels [14]. The model, sketched in Fig. 1, includes the
modulation of actin dynamics by proteins sensing the local
membrane curvature. This is motivated by the fact that
many curvature-sensitive proteins such as BAR-domain
proteins can directly or indirectly regulate actin dynamics
[15-18]. Such coupling between actin polymerisation and
curvature has been shown to give rise to instability and
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spontaneous large scale membrane deformation [19, 20],
but these models consider that actin polymerisation exerts
a net force on the membrane, which is not appropriate for
free-standing actin/membrane systems, in which the net
force must vanish according to Newton’s third law. Here
we show that a gel with uniform polymerisation always
flattens the membrane, but that curvature modulation of
actin dynamics can render the system linearly unstable, in
a way that depends on the interplay between membrane
and actin dynamics.

Model. Actin is polymerized at the membrane surface
which creates a net flow of actin away from the membrane
(Fig. 1). Actin turnover is included by assuming a con-
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FIG. 1. Top: Model for a viscous actin gel polymerizing on a
wavy membrane. Balance between polymerization v, at the
membrane and depolymerization kq yields a layer of finite
thickness. Curvature sensitive proteins (purple) locally mod-
ulate actin polymerization. Bottom: Two possible scenarios
of protein curvature sensing: a curvature-dependent unbind-
ing rate (left) increases the protein bound time in regions of
preferred curvature, and/or a spontaneous curvature (right)
drives the diffusion of membrane-bound proteins toward re-
gions of preferred curvature.
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stant depolymerisation rate ky throughout the actin layer
and mass conservation is given by V - (pov) = —k4pa,
where p, is the actin density and v the flow velocity. We
assume here that the gel is incompressible (see [21] for
the compressible case), such that

V-v=—-kq. (1)

The balance between polymerisation and depolymerisa-
tion ensures that the actin layer reaches a finite thickness
denoted by h(z) measured as the vertical distance from
the membrane to the free surface. The growing actin layer
is modeled as a viscous fluid described by the linear stress
constitutive relation & = —pI + 1 (Vv + VvT), where p
denotes the pressure and 7 the dynamic viscosity. Here,
the pressure acts as a Lagrange multiplier ensuring con-
stant density (cf. Eq. (1)). At low Reynolds numbers and
in the absence of external forces, momentum balance is
given by V - & = 0, which, together with Eq. (1) leads to
Stokes’ equation

—Vp+nVie =0. (2)

We assume that the layer grows normal to the mem-
brane, and that tangential flow is prohibited by strong
friction with the membrane. The case of finite fric-
tion shows little difference for an incompressible fluid
and is discussed in [21]. The boundary condition
at the membrane, located at u(z,t), is v|,—y@) =

(vp + dvp(x) + Oru/+/1 + (azu)Q) nm, (), where n,,(z)

denotes the unit normal vector at the membrane, v,
denotes a constant polymerization velocity and dv,(z) ac-
counts for small, protein regulated local deviations from
vp. The free surface, located at W(x) = u(z) + h(x), is
stress-free (no normal or tangential stress) and its dynam-
ics is given by: v -ny = 0,W//1+ (0, W)2.

In what follows, we assume small membrane deforma-
tions, i.e. |Vu| < 1 and neglect all terms of O(|Vul|?)
and higher. The membrane normal is then given by
Ny, ~ —0,u(z)e, + e,. The same strategy can be used
for the free surface by replacing u(z) by W(x), as small
deformations of the membrane surface lead to small de-
formations of the free surface |Vh| < 1. Consequently,
all quantities may be expanded in independent Fourier
modes, whose amplitudes are denoted by the subscript g,
defined for the membrane shapes as: u(z) = u,e’”. The
validity of the linear regime is discussed in the Supple-
mentary Material (SM).

Steady state actin layer. The stresses exerted by the
polymerizing actin layer on the membrane is obtained by
solving Eqs. (1,2) for the velocity field in terms of Fourier
modes (see details in [21]). The normal component reads

Onn,g = —20q(kqug + dvp ) tanh (qup/kq) . (3)

An actin layer polymerising uniformly (dv, , = 0) on a flat
membrane (u, = 0) does not generate any stress (yn,q =
0) and reaches the steady-state thickness hy = v,/kq.
For uniform polymerisation on a wavy membrane shape

pulling

(o9
<

hS]

~—

=
Il
o

o

1
1
1
=
S :
2 i Wﬁvp(m)—aC
[
:q“/I(.(l/l,‘p:l
UM B B L B B
0 1 2 3 4 5 6
qho

FIG. 2. Normal stress onn,q (Eq. (3)) exerted by a grow-
ing actin layer on a sinusoidal membrane as a function of
the dimensionless layer thickness gho = qup/kq, controlled
by varying the depolymerization rate kq. For uniform poly-
merization (black curve) the stress is positive: pulling at the
troughs and pushing at the crests of the wavy membrane,
stabilizing the flat shape. If the polymerization velocity varies
linearly with the local curvature with a coupling strength «
(red curve), the stress changes sign and destabilizes modes sat-
isfying ¢*hoa/vp > 1. The circles show the numerical results of
a finite element method (see SM). Parameters: quq = 27/100,
a=10/2w

(uq # 0), the stress o, 4 is positive for the entire range of
(non-dimensional) layer thickness ghg,indicating that the
layer pushes on the hills and pulls on the valleys of the
sinusoidal shape, acting to reduce the membrane deforma-
tion. The variation of the normalized stress o, ¢/2nVpg
with ghg is shown in Fig. 2, where we choose to vary the
layer thickness by controlling the depolymerization rate
kq. The stress asymptotically reaches zero in the limit of
gho — oo (corresponding to kg — 0), consistent with pre-
vious results [8]. Note that if the layer thickness changes
through variation of the polymerization velocity v, the
limiting cases for a thin layer (v, small or k4 large) and
a thick layer (v, large or k4 small) come with different in-
terpretations (see SM and [21]). Nevertheless, whichever
way the layer thickness is varied, the membrane-actin
system under uniform polymerization is linearly stable in
the limit of small deformations.

The modulation of actin dynamics by curvature-
sensitive proteins may be accounted for at the linear
level by introducing a curvature-dependent modulation of
the polymerization velocity of the form dv, , = —aq?u,
where « is the coupling strength. Inspection of Eq. (3)
shows that the polymerisation stress changes sign for
q > \/kq/a. This behaviour is shown in Fig. 2 (blue line).
The numerical solution of this system of equations using a
finite element method (detailed in the SM) confirms these
results and show excellent agreement with the linearized



analytical solutions (Fig. 2).

Coupling actin and membrane dynamics. To
understand how this mechanism can drive spontaneous
membrane deformation, we derive the membrane shape
dynamics by comparing the actin-generated forces to the
membrane restoring forces [22] including the dynamics of
curvature-sensitive proteins modulating actin dynamics.
We consider a mixture of positively curved and negatively
curved proteins, denoted by p4 and p_, with spontaneous
curvature +H, respectively. We assume that the aver-
age protein coverage is the same for both protein types
(J dS(p+—p—) = 0), so that the membrane under uniform
protein coverage is flat. In this case, the protein density
field relevant to membrane deformation only involves the
signed protein density p = p; — p— in the limit of small
deformation (see [23] and SM for details). The mem-
brane free energy includes an elastic contribution based
on Helfrich free energy, a protein contribution written as
a Ginzburg-Landau expansion and a coupling term due
to protein spontaneous curvature [24-27]

Flp,u] = /d%[g(v%)z + %(Vu)2

— kpHV?u + gpQ + S(Vp)ﬂ , (4
where k and ~ are the membrane bending rigidity and
tension, and a and b are the strength of protein-protein
interaction and cost of density gradients. From Eq. (4) we
obtain the membrane restoring stress o, = —dF /du =
—kV4u + yV2u + kHV?p and the generalised protein

J

chemical potential p = 6F/dp = —kHV?*u + ap — bV?p.
The ratio \/b/a defines a length scale typically of order
the protein size. As we are concerned with concentration
modulation at (much) larger length scales, we neglect the
concentration gradient energy term (b = 0).

We assume a linear relationship between actin polymer-
ization modulation and the signed protein density with a
coupling strength A:

dv, = Ap . (5)

Demanding force balance between actin and membrane
stresses: o, + onn = 0, we obtain a dynamical equation
for the membrane deformation. The time evolution of the
signed membrane proteins density is governed by mass
conservation 0;p = AAp+j,., where j,. is the recycling flux
for the signed density, which may depend on curvature (see
Fig. 1). The recycling flux for each protein type is written
as jr.+ = jo/2 — ks (1F Ao C) pt, such that proteins with
positive spontaneous curvature unbind slower from regions
of positive curvature [28], with a coupling strength Aog.
On a flat membrane, the average steady-state total protein
density is po = jo/ kgﬂ and the recycling flux for the signed
density is at lowest order j, = kgﬁpo(—p/ p0 + Aot C).

The equations are made dimensionless using the mem-
brane mechanical length scale A = \/k/7 [6] as the char-
acteristic length scale, A /v, as the time scale and 2nv, /A
as the stress scale. All resulting variables are expressed in
dimensionless form and are denoted by a bar (e.q. @, 7,
etc., see table S1). The dynamics of the system in Fourier
space reads

. _ 1 3@+ __ 333 _ A\ [a
05 (“q) - _ ho  tanh(gho) tanh(gho) _ A (qu) ) (6)
Pa —MHG — kghompod®  —Aag® — kY ) \Pa

As the trace of the dynamical matrix in Eq. (6) is always
negative, the fixed point of the dynamical system is stable
if the determinant of the matrix is positive, and turns
into an unstable saddle point if Det < 0.

We first analyze the case of slow protein recycling and
fast protein diffusion (A — oo, k% — 0). Driven by
the spontaneous curvature H, the protein density quickly
adjusts to its steady-state distribution proportional to
the local membrane curvature for any membrane shape:
pq = —q*u,YH /a. Even in the absence of protein/actin
coupling (A = 0), this phenomenon is known to reduce
the effective membrane bending rigidity, and can lead to
the so-called “curvature instability” beyond a spontaneous
curvature threshold, when the effective rigidity becomes
negative and large membrane deformation spontaneously
occurs [26]. Here we concentrate on the role of actin
and remain below this threshold (H < /a/¥ [26]). The
total steady-state membrane stress is shown in Fig. 3 (a)
as a function of the wavenumber for different coupling

(

strengths A. For weak coupling (A < 1), both the actin
stress and the membrane stresses stabilize the flat mem-
brane, so the stress remains of a given sign (positive -
pulling - on the valleys of a sinusoidal shape). For strong
enough coupling, the actin stress can destabilize a finite
range of ¢ modes. Since the membrane stress stabilizes
large ¢ modes, there exists a critical coupling strength A*
beyond which a range of modes around a critical wave
mode ¢* become unstable. This value is shown as a func-
tion of the layer thickness in Fig. 3 (b), together with the
corresponding value of ¢*. Both are decreasing functions
of the gel thickness, with asymptotic values for g*hg > 1

v —98 T in o — T T

We see that A% — 0 as H — /a/7, consistent with the
classical curvature instability discussed above [26].

In the opposite limit of very slow protein diffusion
(A — 0, k% — o), the instability must rely only on
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FIG. 3. Total steady-state membrane stress for fast protein
diffusion without recycling. (a) Total normal stress as a func-
tion of the wave number ¢ for different coupling strengths A.
A negative value indicates a destabilizing effect. (b) Critical
coupling strength A* at which the first unstable mode appears
(wavevector ¢*, red dot in panel (a)) as a function of the layer
thickness. Inset shows the value of ¢*. Parameters: H = 1,
a=2,7% =15 and ho = 10 for panel (a).

curvature-dependent recycling, and one may show (see
SM) that the instability threshold (for thick layers) is
given by

_ 2~ _ _ _
A=\ 1—poHor, @ =1/\/1— poHAosr. (8)

B pO)\off

This expression indicates a new type of actin-independent
curvature instability, mediated by the curvature-
dependent turnover of curvature-active proteins, which
occurs if poHMNogr > 1 (see SM). Here again, we remain
below this limit and concentrate on the role of actin.
The coupling threshold A* is shown as a function of
the ratio of in-plane diffusion to recycling rates A/ /_ﬂgﬂ
in Fig. 4, for the two curvature-sensing mechanisms dis-
played in Fig. 1. It varies monotonously between the
asymptotes given by Egs. (7,8). Therefore the instability
is promoted by fast protein diffusion if protein localisation
by membrane curvature is more efficient via in-plane dif-
fusion than via turnover, which corresponds to A%, < Aj,
or H > apoXog/5. The left panel of Fig. 4 shows this
behavior varying H at fixed A\og and the right panel vary-
ing \og at fixed H. As expected, the system is always
stable (A* — o) for very slow diffusion in the absence
of curvature-dependent recycling (Aog = 0) and for very
fast diffusion without spontaneous curvature (H = 0).
Discussion. Our results may be summarized as fol-
lows: an actin gel growing on a corrugated membrane
exerts a mechanical stress on the membrane. For an in-
compressible gel growing uniformly, the stress stabilizes
flat membranes and can reach levels of order the elas-
tic modulus of the gel E ~ nkq ~ 10*Pa for a gel of
viscosity 7 = 10*Pa.s and of turnover rate kg = 1s!
[8]. Spontaneous actin-driven protrusion (linearly un-
stable) are predicted to occur in case actin dynamics
(polymerisation rate) is sensitive to the curvature of the
membrane it grows from. Curvature-sensing proteins are
known to modulate actin polymerisation [16, 18]. Both
N-BAR (Amphiphysin) and I-BAR (IRSp53, MTSS-1),
respectively attracted to negative and positive curvatures
according to our convention, can promote actin recruit-
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FIG. 4.

Instabilities threshold A* (the system is unstable
if A > A") as a function of the ratio of protein mobility to
recycling rate A/ k. One the left panel, the spontaneous
curvature H is varied. at fixed curvature-sensitive unbinding
rate dog = 5. On the right panel, o is varied at constant
H = 0.5. The asymptotic regimes of low and high mobility
correspond to Egs. (7,8). The instability is eased by protein
mobility if H > (_lp()j\off/’_y (see text). Parameters: a = 1,
b=0,5=1, po=0.1, ho = 10.

ment [29, 30]. Curvature sensing of BAR domains involve
both a spontaneous curvature and curvature-dependent
recycling. We account for both effects (through the pa-
rameters H and A.g, respectively) within a full linear
model coupling actin and protein dynamics with mem-
brane mechanics.

Our model shows the existence of an actin-driven cur-
vature instability when proteins sensitive to positive cur-
vature promote polymerisation. This is in line with obser-
vations that I-BAR is implicated in protrusion formation
[15, 17]. This instability is predicted to occur if the value
of the parameter A, linearly coupling actin polymerisation
modulation to the curvature-dependent protein density
(surface fraction) p according to dv,/v, = Ap, is beyond
a threshold value A*. Asymptotic expressions when ei-
ther of the two curvature-sensing mechanisms dominates
are given in Egs. (7) and (8), and the full phase dia-
gram is shown Fig. 4. Which mechanism dominates is
largely controlled by the ratio of protein mobility to re-
cycling rate. As the latter varies over a wide range for
BAR proteins (klg : 0.01 — 10/sec [28], corresponding to
A/E2: : 0.1 —100), this shows the relevance of exploring
this parameter as done in Fig. 4. For appropriate physical
parameters we find that A* ~ 5 — 10 which corresponds
to a doubling of actin polymerisation speed in regions
of favored curvature (with p ~ 10%). This seems like a
reasonable threshold, reachable in cellular systems. The
typical length scale of the first unstable mode is of order
27 /q* ~ 27\ ~ 500nm. It is comparable to the typical
thickness of free-standing cellular protrusions (thickness
of 430 — 800 nm reported in [7]). Although the latter cer-
tainly result from non-linear coarsening effects beyond the
linear stability analysis proposed here, such comparison
is rather encouraging.
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